Extract posterior samples of specified parameters
# S3 method for brmsfit
posterior_samples(x, pars = NA, parameters = NA,
exact_match = FALSE, add_chain = FALSE, add_chains = FALSE,
subset = NULL, as.matrix = FALSE, as.array = FALSE, ...)# S3 method for brmsfit
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
# S3 method for brmsfit
as.matrix(x, ...)
# S3 method for brmsfit
as.array(x, ...)
posterior_samples(x, pars = NA, ...)
An R
object typically of class brmsfit
Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.
A deprecated alias of pars
.
Indicates whether parameter names
should be matched exactly or treated as regular expression.
Default is FALSE
.
A flag indicating if the returned data.frame
should contain two additional columns. The chain
column
indicates the chain in which each sample was generated, the iter
column indicates the iteration number within each chain.
A deprecated alias of add_chain
.
A numeric vector indicating the rows
(i.e., posterior samples) to be returned.
If NULL
(the default), all posterior samples are returned.
Should the output be a matrix
instead of a data.frame
? Defaults to FALSE
.
Should the output be an array
instead of a data.frame
? Defaults to FALSE
.
For as.data.frame
, as.matrix
, and as.array
:
Further arguments to be passed to posterior_samples
.
See as.data.frame
.
A data frame (matrix or array) containing the posterior samples, with one column per parameter. In case an array is returned, it contains one additional dimension for the chains.
Currently there are methods for brmsfit
objects.
as.data.frame.brmsfit
, as.matrix.brmsfit
, and
as.array.brmsfit
are basically aliases of
posterior_samples.brmsfit
and differ from
each other only in type of the returned object.
# NOT RUN {
fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "cumulative")
# extract posterior samples of population-level effects
samples1 <- posterior_samples(fit, "^b")
head(samples1)
# extract posterior samples of group-level standard deviations
samples2 <- posterior_samples(fit, "^sd_")
head(samples2)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab