Wraps a DataBackend around data.
mlr3 ships with methods for data.frame (converted to a DataBackendDataTable
and Matrix from package Matrix (converted to a DataBackendMatrix).
Additional methods are implemented in the package mlr3db, e.g. to connect to real DBMS like PostgreSQL (via dbplyr) or DuckDB (via DBI/duckdb).
# S3 method for data.frame
as_data_backend(data, primary_key = NULL, keep_rownames = FALSE, ...)# S3 method for Matrix
as_data_backend(data, primary_key = NULL, dense = NULL, ...)
as_data_backend(data, primary_key = NULL, ...)
any
Data to create a DataBackend from.
For a data.frame() (this includes tibble() from tibble and data.table::data.table()),
a DataBackendDataTable is created.
For objects of type Matrix (from package Matrix), a DataBackendMatrix is returned.
See methods("as_data_backend") for all possible input formats.
(character(1) | integer())
Name of the primary key column, or integer vector of row ids.
(logical(1) | character(1))
If TRUE or a single string, keeps the row names of data as a new column.
The column is named like the provided string, defaulting to "..rownames" for keep_rownames == TRUE.
Note that the created column will be used as a regular feature by the task unless you manually change the column role.
Also see data.table::as.data.table().
(any)
Additional arguments passed to the respective DataBackend method.
(data.frame()).
Dense data.
Other DataBackend:
DataBackendDataTable,
DataBackendMatrix,
DataBackend
# NOT RUN {
# create a new backend using the iris data:
as_data_backend(iris)
# }
Run the code above in your browser using DataLab