checkComplex(x, any.missing = TRUE, all.missing = TRUE, len = NULL,
min.len = NULL, max.len = NULL, unique = FALSE, names = NULL)assertComplex(x, any.missing = TRUE, all.missing = TRUE, len = NULL,
min.len = NULL, max.len = NULL, unique = FALSE, names = NULL,
.var.name)
testComplex(x, any.missing = TRUE, all.missing = TRUE, len = NULL,
min.len = NULL, max.len = NULL, unique = FALSE, names = NULL)
x. Defaults to a heuristic to determine
the name using deparse and substitute.logical(1)]
Are vectors with missing values allowed? Default is TRUE.logical(1)]
Are vectors with only missing values allowed? Default is TRUE.integer(1)]
Exact expected length of x.integer(1)]
Minimal length of x.integer(1)]
Maximal length of x.logical(1)]
Must all values be unique? Default is FALSE.character(1)]
Check for names. See checkNamed for possible values.
Default is TRUE.
If the check is not successful, assertComplex throws an error message,
testComplex returns FALSE and checkComplex returns
a string with the error message.NA, NA_integer_, NA_real_, NA_complex_
NA_character_ and NaN.assertArray,
checkArray, testArray;
assertAtomicVector,
checkAtomicVector,
testAtomicVector;
assertAtomic, checkAtomic,
testAtomic; assertCharacter,
checkCharacter,
testCharacter;
assertDataFrame,
checkDataFrame,
testDataFrame;
assertEnvironment,
checkEnvironment,
testEnvironment;
assertFactor, checkFactor,
testFactor; assertFunction,
checkFunction, testFunction;
assertIntegerish,
checkIntegerish,
testIntegerish;
assertInteger, checkInteger,
testInteger; assertList,
checkList, testList;
assertLogical, checkLogical,
testLogical; assertMatrix,
checkMatrix, testMatrix;
assertNumeric, checkNumeric,
testNumeric; assertVector,
checkVector, testVectortestComplex(1)
testComplex(1+1i)Run the code above in your browser using DataLab