While there are reasons why users may need to check every record meeting their
search criteria (i.e. using atlas_occurrences()), a common use case
is to simply identify which species occur in a specified region, time period,
or taxonomic group. This function returns a data.frame with one row
per species, and columns giving associated taxonomic information.
atlas_species(
request = NULL,
identify = NULL,
filter = NULL,
geolocate = NULL,
refresh_cache = FALSE
)optional data_rquest object: generated by a call to
galah_call().
data.frame: generated by a call to
galah_identify().
data.frame: generated by a call to
galah_filter()
string: generated by a call to
galah_geolocate()
logical: if set to TRUE and
galah_config(caching = TRUE) then files cached from a previous query will
be replaced by the current query
An object of class tbl_df and data.frame (aka a tibble),
returning matching species The data.frame object has attributes listing of
the user-supplied arguments of the data_request
(i.e., identify, filter, geolocate, columns)
First, look up a genus of interest in the ALA with search_taxa()
search_taxa("Heleioporus")
#> # A tibble: 1 x 13
#> search_term scientific_name scientific_name_~ taxon_concept_id rank match_type kingdom phylum class order family genus
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 Heleioporus Heleioporus Gray, 1841 urn:lsid:biodiver~ genus exactMatch Animal~ Chord~ Amph~ Anura Limno~ Hele~
#> # ... with 1 more variable: issues <chr>
It's a good idea to find how many species there are for the taxon you are
interested in - in our case, genus Heleioporus - with atlas_counts()
galah_call() |>
galah_identify("Heleioporus") |>
atlas_counts(type = "species")
#> # A tibble: 1 x 1
#> count
#> <int>
#> 1 6
Now get taxonomic information on all species within this genus with
atlas_species()
# (every row is a species with associated taxonomic data)
galah_call() |>
galah_identify("Heleioporus") |>
atlas_species()
#> # A tibble: 6 x 10
#> kingdom phylum class order family genus species author species_guid vernacular_name
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ (Gray, 1~ urn:lsid:biodiversity~ Moaning Frog
#> 2 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ (Shaw & ~ urn:lsid:biodiversity~ Giant Burrowin~
#> 3 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ Gray, 18~ urn:lsid:biodiversity~ Western Spotte~
#> 4 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ (Lee & M~ urn:lsid:biodiversity~ Sand Frog
#> 5 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ (Lee & M~ urn:lsid:biodiversity~ Plains Frog
#> 6 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ Lee, 1967 urn:lsid:biodiversity~ Western Marsh ~
You can also get taxonomic information on species by piping with %>% or
|>. Just begin your query with galah_call()
galah_call() |>
galah_identify("Heleioporus") |>
atlas_species()
#> # A tibble: 6 x 10
#> kingdom phylum class order family genus species author species_guid vernacular_name
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ (Gray, 1~ urn:lsid:biodiversity~ Moaning Frog
#> 2 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ (Shaw & ~ urn:lsid:biodiversity~ Giant Burrowin~
#> 3 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ Gray, 18~ urn:lsid:biodiversity~ Western Spotte~
#> 4 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ (Lee & M~ urn:lsid:biodiversity~ Sand Frog
#> 5 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ (Lee & M~ urn:lsid:biodiversity~ Plains Frog
#> 6 Animalia Chordata Amphibia Anura Limnodynastidae Heleioporus Heleioporu~ Lee, 1967 urn:lsid:biodiversity~ Western Marsh ~
The primary use case of this function is to extract species-level information
given a set of criteria defined by search_taxa(),
galah_filter() or galah_geolocate(). If the purpose
is simply to get taxonomic information that is not restricted by filtering,
then search_taxa() is more efficient. Similarly, if counts are
required that include filter but without returning taxonomic detail, then
atlas_counts() is more efficient (see examples).