Learn Python and AI for free! One week only. No credit card needed.
Ends in:
backgroundCorrectionMethods()
normalizationMethods()
summarizationMethods()
backgroundCorrect(object, method=backgroundCorrectionMethods(), copy=TRUE, extra, subset=NULL, target='core', verbose=TRUE)
summarize(object, probes=rownames(object), method="medianpolish", verbose=TRUE, ...)
## S3 method for class 'FeatureSet':
normalize(object, method=normalizationMethods(), copy=TRUE, subset=NULL,target='core', verbose=TRUE, ...)
## S3 method for class 'matrix':
normalize(object, method=normalizationMethods(), copy=TRUE, verbose=TRUE, ...)
## S3 method for class 'ff_matrix':
normalize(object, method=normalizationMethods(), copy=TRUE, verbose=TRUE, ...)
normalizeToTarget(object, targetDist, method="quantile", copy=TRUE, verbose=TRUE)
object
.backgroundCorrectionMethods
and normalizationMethods
will return a character vector with the methods implemented currently. backgroundCorrect
, normalize
and
normalizeToTarget
will return a matrix with same dimensions as
the input matrix. If they are applied to a FeatureSet object, the PM
matrix will be used as input.
The summarize
method will return a matrix with
length(unique(probes))
rows and ncol(object)
columns.
object
must match the length of
probes
.ns <- 100
nps <- 1000
np <- 10
intensities <- matrix(rnorm(ns*nps*np, 8000, 400), nc=ns)
ids <- rep(as.character(1:nps), each=np)
bgCorrected <- backgroundCorrect(intensities)
normalized <- normalize(bgCorrected)
summarizationMethods()
expression <- summarize(normalized, probes=ids)
intensities[1:20, 1:3]
expression[1:20, 1:3]
target <- rnorm(np*nps)
normalizedToTarget <- normalizeToTarget(intensities, target)
if (require(oligoData) & require(pd.hg18.60mer.expr)){
## Example of normalization with real data
data(nimbleExpressionFS)
boxplot(nimbleExpressionFS, main='Original')
for (mtd in normalizationMethods()){
message('Normalizing with ', mtd)
res <- normalize(nimbleExpressionFS, method=mtd, verbose=FALSE)
boxplot(res, main=mtd)
}
}
Run the code above in your browser using DataLab