This function provides the backpropagation algorithm for deep architectures.
backpropagation(darch, trainData, targetData, ...)
The data for training.
The targets for the data.
Further parameters.
The trained deep architecture
The function is getting the learning parameters from the provided
'>DArch
object. It uses the attributes momentum
,
finalMomentum
and momentumSwitch
for the calculation of the new
weights with momentum. The attributes learnRateWeights
and
learnRateBiases
will be used for updating the weights. To use the
backpropagation function as the fine tuning function the layer functions of
the darch '>DArch
object must set to the versions which
calculates also the derivatives of the function result.
Rumelhart, D., G. E. Hinton, R. J. Williams, Learning representations by backpropagating errors, Nature 323, S. 533-536, DOI: 10.1038/323533a0, 1986.
'>DArch
, rpropagation
,
minimizeAutoencoder
minimizeClassifier
minimizeClassifier
Other fine-tuning functions: rpropagation