## Not run: 
# library(SAVE)
# 
# #############
# # load data
# #############
# 
# data(spotweldfield,package='SAVE')
# data(spotweldmodel,package='SAVE')
# 
# ##############
# # create the SAVE object which describes the problem and
# # compute the corresponding mle estimates
# ##############
# 
# gfsw <- SAVE(response.name="diameter", controllable.names=c("current", "load", "thickness"), 
# 			 calibration.names="tuning", field.data=spotweldfield, 
# 			 model.data=spotweldmodel, mean.formula=~1, 
# 			 bestguess=list(tuning=4.0))
# 
# ##############
# # obtain the posterior distribution of the unknown parameters 
# ##############
# 
# gfsw <- bayesfit(object=gfsw, prior=c(uniform("tuning", upper=8, lower=0.8)),
# 				 n.iter=20000, n.burnin=100, n.thin=2)
# 
# # summary of the results
# summary(gfsw)
# 	
# 	## End(Not run)
Run the code above in your browser using DataLab