bbnam
for details.)bbnam.bf(dat, nprior=matrix(rep(0.5, dim(dat)[1]^2),
nrow = dim(dat)[1], ncol = dim(dat)[1]), em.fp=0.5, ep.fp=0.5,
emprior.pooled=c(1, 1), epprior.pooled=c(1, 1),
emprior.actor=cbind(rep(1, dim(dat)[1]), rep(1, dim(dat)[1])),
epprior.actor=cbind(rep(1, dim(dat)[1]), rep(1, dim(dat)[1])),
diag=FALSE, mode="digraph", reps=1000)
nprior[i,j]
gives the prior probability of i sending the relation to j in the criterion graph.) If no network bayes.factor
.bbnam
function help) is a fairly simple model for integrating informant reports regarding social network data. bbnam.bf
computes Bayes Factors (integrated likelihood ratios) for the three error submodels of the bbnam: fixed error probabilities, pooled error probabilities, and per observer/actor error probabilities.Robert, C. (1994). The Bayesian Choice: A Decision-Theoretic Motivation. Springer.
bbnam