Learn R Programming

⚠️There's a newer version (1.5.0) of this package.Take me there.

bbotk - Black-Box Optimization Toolkit

Package website: release | dev

This package provides a common framework for optimization including

  • Optimizer: Objects of this class allow you to optimize an object of the class OptimInstance.
  • OptimInstance: Defines the optimization problem, consisting of an Objective, the search_space and a Terminator. All evaluations on the OptimInstance will be automatically stored in its own Archive.
  • Objective: Objects of this class contain the objective function. The class ensures that the objective function is called in the right way and defines, whether the function should be minimized or maximized.
  • Terminator: Objects of this class control the termination of the optimization independent of the optimizer.

Various optimization methods are already implemented e.g. grid search, random search and generalized simulated annealing.

Resources

Installation

Install the last release from CRAN:

install.packages("bbotk")

Install the development version from GitHub:

remotes::install_github("mlr-org/bbotk")

Examples

Optimization

# define objective function
fun = function(xs) {
  - (xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10
}

# set domain
domain = ps(
  x1 = p_dbl(-10, 10),
  x2 = p_dbl(-5, 5)
)

# set codomain
codomain = ps(
  y = p_dbl(tags = "maximize")
)

# create Objective object
objective = ObjectiveRFun$new(
  fun = fun,
  domain = domain,
  codomain = codomain,
  properties = "deterministic"
)

# Define termination criterion
terminator = trm("evals", n_evals = 10)

# create optimization instance
instance = OptimInstanceSingleCrit$new(
  objective = objective,
  terminator = terminator
)

# load optimizer
optimizer = opt("gensa")

# trigger optimization
optimizer$optimize(instance)
##        x1        x2  x_domain        y
## 1: 2.0452 -2.064743 <list[2]> 9.123252
# best performing configuration
instance$result
##        x1        x2  x_domain        y
## 1: 2.0452 -2.064743 <list[2]> 9.123252
# all evaluated configuration
as.data.table(instance$archive)
##            x1        x2          y           timestamp batch_nr x_domain_x1
##  1: -4.689827 -1.278761 -37.716445 2022-09-10 18:22:05        1   -4.689827
##  2: -5.930364 -4.400474 -54.851999 2022-09-10 18:22:05        2   -5.930364
##  3:  7.170817 -1.519948 -18.927907 2022-09-10 18:22:05        3    7.170817
##  4:  2.045200 -1.519948   7.807403 2022-09-10 18:22:05        4    2.045200
##  5:  2.045200 -2.064742   9.123250 2022-09-10 18:22:05        5    2.045200
##  6:  2.045200 -2.064742   9.123250 2022-09-10 18:22:05        6    2.045200
##  7:  2.045201 -2.064742   9.123250 2022-09-10 18:22:05        7    2.045201
##  8:  2.045199 -2.064742   9.123250 2022-09-10 18:22:05        8    2.045199
##  9:  2.045200 -2.064741   9.123248 2022-09-10 18:22:05        9    2.045200
## 10:  2.045200 -2.064743   9.123252 2022-09-10 18:22:05       10    2.045200
##     x_domain_x2
##  1:   -1.278761
##  2:   -4.400474
##  3:   -1.519948
##  4:   -1.519948
##  5:   -2.064742
##  6:   -2.064742
##  7:   -2.064742
##  8:   -2.064742
##  9:   -2.064741
## 10:   -2.064743

Quick optimization with bb_optimize

library(bbotk)

# define objective function
fun = function(xs) {
  c(y1 = - (xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10)
}

# optimize function with random search
result = bb_optimize(fun, method = "random_search", lower = c(-10, -5), upper = c(10, 5),
  max_evals = 100)

# optimized parameters
result$par
##           x1       x2
## 1: -7.982537 4.273021
# optimal outcome
result$value
##        y1 
## -142.5479

Copy Link

Version

Install

install.packages('bbotk')

Monthly Downloads

5,373

Version

0.6.0

License

LGPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Marc Becker

Last Published

October 25th, 2022

Functions in bbotk (0.6.0)

CallbackOptimization

Create Optimization Callback
ObjectiveRFun

Objective interface with custom R function
Archive

Logging object for objective function evaluations
ObjectiveRFunDt

Objective interface for basic R functions.
ContextOptimization

Optimization Context
Codomain

Codomain of Function
Objective

Objective function with domain and co-domain
OptimInstanceSingleCrit

Optimization Instance with budget and archive
OptimInstance

Optimization Instance with budget and archive
Progressor

Progressor
Terminator

Abstract Terminator Class
ArchiveBest

Minimal logging object for objective function evaluations
Optimizer

Optimizer
bbotk_assertions

Assertion for bbotk objects
OptimInstanceMultiCrit

Optimization Instance with budget and archive
is_dominated

Calculate which points are dominated
bbotk-package

bbotk: Black-Box Optimization Toolkit
assign_result_default

Default assign_result function
mlr_optimizers

Dictionary of Optimizer
bbotk_reflections

Reflections for bbotk
mlr_terminators_combo

Combine Terminators
bbotk.backup

Backup Archive Callback
mlr_optimizers_cmaes

Optimization via Covariance Matrix Adaptation Evolution Strategy
branin

Branin Function
callback_optimization

Create Optimization Callback
mlr_optimizers_design_points

Optimization via Design Points
mlr_terminators_run_time

Run Time Terminator
mlr_terminators_evals

Terminator that stops after a number of evaluations
mlr_terminators_stagnation

Terminator that stops when optimization does not improve
opt

Syntactic Sugar Optimizer Construction
optimize_default

Default optimization function
mlr_terminators_none

None Terminator
mlr_optimizers_nloptr

Optimization via Non-linear Optimization
reexports

Objects exported from other packages
search_start

Get start values for optimizers
mlr_terminators_perf_reached

Performance Level Terminator
mlr_optimizers_random_search

Optimization via Random Search
mlr_optimizers_focus_search

Optimization via Focus Search
mlr_optimizers_gensa

Optimization via Generalized Simulated Annealing
mlr_terminators_stagnation_batch

Terminator that stops when optimization does not improve
nds_selection

Best points w.r.t. non dominated sorting with hypervolume contribution.
bb_optimize

Black-Box Optimization
shrink_ps

Shrink a ParamSet towards a point.
mlr_optimizers_grid_search

Optimization via Grid Search
transform_xdt_to_xss

Calculates the transformed x-values
mlr_optimizers_irace

Optimization via Iterated Racing
mlr_terminators

Dictionary of Terminators
mlr_terminators_clock_time

Clock Time Terminator
trm

Syntactic Sugar Terminator Construction