Learn R Programming

mlr (version 2.6)

benchmark: Benchmark experiment for multiple learners and tasks.

Description

Complete benchmark experiment to compare different learning algorithms across one or more tasks w.r.t. a given resampling strategy. Experiments are paired, meaning always the same training / test sets are used for the different learners. Furthermore, you can of course pass enhanced learners via wrappers, e.g., a learner can be automatically tuned using makeTuneWrapper.

Usage

benchmark(learners, tasks, resamplings, measures, keep.pred = TRUE,
  show.info = getMlrOption("show.info"))

Arguments

Value

[BenchmarkResult].

See Also

Other benchmark: BenchmarkResult, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateBenchmarkSummaryData, generateCritDifferencesData, generateRankMatrixAsBarData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearners, getBMRMeasureIds, getBMRMeasures, getBMRPerformances, getBMRPredictions, getBMRTaskIds, getBMRTuneResults, plotBenchmarkResult, plotBenchmarkSummary, plotCritDifferences, plotRankMatrixAsBar