Learn R Programming

mlr (version 2.7)

benchmark: Benchmark experiment for multiple learners and tasks.

Description

Complete benchmark experiment to compare different learning algorithms across one or more tasks w.r.t. a given resampling strategy. Experiments are paired, meaning always the same training / test sets are used for the different learners. Furthermore, you can of course pass enhanced learners via wrappers, e.g., a learner can be automatically tuned using makeTuneWrapper.

Usage

benchmark(learners, tasks, resamplings, measures, keep.pred = TRUE,
  models = TRUE, show.info = getMlrOption("show.info"))

Arguments

Value

[BenchmarkResult].

See Also

Other benchmark: BenchmarkResult, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearners, getBMRMeasureIds, getBMRMeasures, getBMRPerformances, getBMRPredictions, getBMRTaskIds, getBMRTuneResults, plotBMRBoxplots, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences

Examples

Run this code
lrns = list(makeLearner("classif.lda"), makeLearner("classif.rpart"))
tasks = list(iris.task, sonar.task)
rdesc = makeResampleDesc("CV", iters = 2L)
meas = list(acc, ber)
bmr = benchmark(lrns, tasks, rdesc, measures = meas)
rmat = convertBMRToRankMatrix(bmr)
print(rmat)
plotBMRSummary(bmr)
plotBMRBoxplots(bmr, ber, style = "violin")
plotBMRRanksAsBarChart(bmr, pos = "stack")

Run the code above in your browser using DataLab