50% off: Unlimited data and AI learning.
State of Data and AI Literacy Report 2025

VGAM (version 1.0-4)

bifrankcop: Frank's Bivariate Distribution Family Function

Description

Estimate the association parameter of Frank's bivariate distribution by maximum likelihood estimation.

Usage

bifrankcop(lapar = "loge", iapar = 2, nsimEIM = 250)

Arguments

lapar

Link function applied to the (positive) association parameter α. See Links for more choices.

iapar

Numeric. Initial value for α. If a convergence failure occurs try assigning a different value.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm and vgam.

Details

The cumulative distribution function is P(Y1y1,Y2y2)=Hα(y1,y2)=logα[1+(αy11)(αy21)/(α1)] for α1. Note the logarithm here is to base α. The support of the function is the unit square.

When 0<α<1 the probability density function hα(y1,y2) is symmetric with respect to the lines y2=y1 and y2=1y1. When α>1 then hα(y1,y2)=h1/α(1y1,y2).

If α=1 then H(y1,y2)=y1y2, i.e., uniform on the unit square. As α approaches 0 then H(y1,y2)=min(y1,y2). As α approaches infinity then H(y1,y2)=max(0,y1+y21).

The default is to use Fisher scoring implemented using rbifrankcop. For intercept-only models an alternative is to set nsimEIM=NULL so that a variant of Newton-Raphson is used.

References

Genest, C. (1987) Frank's family of bivariate distributions. Biometrika, 74, 549--555.

See Also

rbifrankcop, bifgmcop, simulate.vlm.

Examples

Run this code
# NOT RUN {
ymat <- rbifrankcop(n = 2000, apar = exp(4))
plot(ymat, col = "blue")
fit <- vglm(ymat ~ 1, fam = bifrankcop, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
vcov(fit)
head(fitted(fit))
summary(fit)
# }

Run the code above in your browser using DataLab