## See "biglasso-package" for the comprehensive example of reading data from
## external big data file, fit lasso model, run cross validation in parallel, etc.
## Below are rather simple examples.
## Linear regression
data(prostate)
X <- as.matrix(prostate[,1:8])
y <- prostate$lpsa
X <- as.big.matrix(X)
# lasso, default
par(mfrow=c(1,3))
fit.lasso <- biglasso(X, y, family = 'gaussian')
plot(fit.lasso, log.l = TRUE, main = 'lasso')
# ridge
fit.ridge <- biglasso(X, y, penalty = 'ridge', family = 'gaussian')
plot(fit.ridge, log.l = TRUE, main = 'ridge')
# elastic net
fit.enet <- biglasso(X, y, penalty = 'enet', alpha = 0.5, family = 'gaussian')
plot(fit.enet, log.l = TRUE, main = 'elastic net, alpha = 0.5')
## Logistic regression
data(heart)
X <- as.matrix(heart[,1:9])
y <- heart$chd
X <- as.big.matrix(X)
# lasso, default
par(mfrow = c(1, 3))
fit.bin.lasso <- biglasso(X, y, penalty = 'lasso', family = "binomial")
plot(fit.bin.lasso, log.l = TRUE, main = 'lasso')
# ridge
fit.bin.ridge <- biglasso(X, y, penalty = 'ridge', family = "binomial")
plot(fit.bin.ridge, log.l = TRUE, main = 'ridge')
# elastic net
fit.bin.enet <- biglasso(X, y, penalty = 'enet', alpha = 0.5, family = "binomial")
plot(fit.bin.enet, log.l = TRUE, main = 'elastic net, alpha = 0.5')
Run the code above in your browser using DataLab