binom.confint(x, n, conf.level = 0.95, methods = "all", ...)c("exact", "ac", "asymptotic", "wilson",
"prop.test", "bayes", "logit", "cloglog", "probit") is allowed. Default is
"all".binom.bayes.data.frame containing the observed proportions and
the lower and upper bounds of the confidence interval for all the
methods in "methods".(1-alpha/2)^nexactasymptoticagresti-coullwilsonprop.testprop.test(x = x, n = n, conf.level = conf.level)$conf.int.}
bayesbinom.bayes.}
logitbinom.logit.}
cloglogbinom.cloglog.}
probitbinom.probit.}
profilebinom.profile.}R.G. Newcombe, Logit confidence intervals and the inverse sinh transformation (2001), American Statistician, 55:200-202.
L.D. Brown, T.T. Cai and A. DasGupta (2001), Interval estimation for a binomial proportion (with discussion), Statistical Science, 16:101-133.
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1997) Bayesian Data Analysis, London, U.K.: Chapman and Hall.
binom.bayes, binom.logit, binom.probit,
binom.cloglog, binom.coverage, prop.testbinom.confint(x = c(2, 4), n = 100, tol = 1e-8)Run the code above in your browser using DataLab