binomialff(link = "logit", earg = list(),
dispersion = 1, mv = FALSE, onedpar = !mv,
parallel = FALSE, zero = NULL)Links for more choices.Links for more information.dispersion = 0 to have it estimated, or else specify a known
positive value (or values if mvTRUE, then the response is interpreted
as $M$ independent binary responses, where $M$ is the number
of columns of the response matrix. In this case, the response matrix
should have zero/one values only.If <
mv, then a separate dispersion
parameter will be computed for each response (column), by default.
Setting onedpar=TRUE will pool them so that there is only one
dispersion parameter to be estimatmv is TRUE. This
argument allows for the parallelism assumption whereby the regression
coefficients for a variable is constrained to be equal over the $M$
linear/additive predictors. The maximum likelihood estimate will not exist if the data is
completely separable or quasi-completely separable.
See Chapter 10 of Altman et al. (2004) for more details.
Yet to do: add a sepcheck=TRUE, say, argument to detect this
problem and give an appropriate warning.
A dispersion parameter that is less/greater than unity corresponds to under-/over-dispersion relative to the binomial model. Over-dispersion is more common in practice.
Setting mv=TRUE is necessary when fitting a Quadratic RR-VGLM
(see cqo) because the response is a matrix of $M$
columns (e.g., one column per species). Then there will be $M$
dispersion parameters (one per column of the response matrix).
When used with cqo and cao, it may be
preferable to use the cloglog link.
Altman, M. and Gill, J. and McDonald, M. P. (2004) Numerical Issues in Statistical Computing for the Social Scientist, Hoboken, NJ: Wiley-Interscience.
quasibinomialff,
Links,
rrvglm,
cqo,
cao,
betabinomial,
zibinomial,
dexpbinomial,
mbinomial,
seq2binomial,
amlbinomial,
binomial.quasibinomialff()
quasibinomialff(link="probit")
fit = vgam(agaaus ~ poly(altitude, 2), binomialff(link=cloglog), hunua)
with(hunua, plot(altitude, agaaus, col="blue", ylab="P(agaaus=1)",
main="Presence/absence of Agathis australis", las=1))
o = with(hunua, order(altitude))
with(hunua, lines(altitude[o], fitted(fit)[o], col="red", lwd=2))Run the code above in your browser using DataLab