biomvRseg(x, maxk=NULL, maxbp=NULL, maxseg=NULL, xPos=NULL, xRange=NULL, usePos='start', family='norm', penalty='BIC', twoStep=TRUE, segDisp=FALSE, useMC=FALSE, useSum=TRUE, comVar=TRUE, maxgap=Inf, tol=1e-06, grp=NULL, cluster.m=NULL, avg.m='median', trim=0, na.rm=TRUE)
GRanges
object with input stored in the meta DataFrame
xPos
/ xRange
/ or x
x
row
IRanges
/GRanges
object, same length as x
rows
x
distribution, only the following types are supported: 'norm', 'nbinom', 'pois'
mclapply
should be used to speed up the calculation for nbinom dispersion estimation
tilingArray
solution
TRUE
if NA
value should be ignored
biomvRCNS-class
object:
x
:"GRanges"
, with range information either from real positional data or just indices, with input data matrix stored in the meta columns.res
:"GRanges"
, each range represent one continuous segment identified, with sample name slot 'SAMPLE' and segment mean slot 'MEAN' stored in the meta columns param
:"list"
, list of all parameters used in the model run. tilingArray
; however capable of handling count data from sequencing.
Picard,F. et al. (2005) A statistical approach for array CGH data analysis. BMC Bioinformatics, 6, 27. Huber,W. et al. (2006) Transcript mapping with high density oligonucleotide tiling arrays. Bioinformatics, 22, 1963-1970. .
Zhang, N. R. and Siegmund, D. O. (2007). A Modified Bayes Information Criterion with Applications to the Analysis of Comparative Genomic Hybridization Data. Biometrics 63 22-32.
Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics, 9, 321-332
biomvRhsmm
data(coriell)
xgr<-GRanges(seqnames=paste('chr', coriell[,2], sep=''), IRanges(start=coriell[,3], width=1, names=coriell[,1]))
values(xgr)<-DataFrame(coriell[,4:5], row.names=NULL)
xgr<-xgr[order(xgr)]
resseg<-biomvRseg(x=xgr, maxbp=4E4, maxseg=10, family='norm', grp=c(1,2))
Run the code above in your browser using DataLab