Last chance! 50% off unlimited learning
Sale ends in
bisa(lshape = "loge", lscale = "loge",
eshape = list(), escale = list(),
ishape = NULL, iscale = 1, method.init = 1, zero = NULL)
"vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.pnorm
),
$\xi(t) = \sqrt{t} - 1 / \sqrt{t}$,
$y > 0$,
$a>0$ is the shape parameter,
$b>0$ is the scale parameter.
The mean of $Y$ (which is the fitted value) is
$b(1 + a^2/2)$.
and the variance is
$a^2 b^2 (1 + \frac{5}{4}a^2)$.
By default, $\eta_1=\log(a)$ and
$\eta_2=\log(b)$ for this family function.Note that $a$ and $b$ are orthogonal, i.e., the Fisher information matrix is diagonal. This family function implements Fisher scoring, and it is unnecessary to compute any integrals numerically.
Birnbaum, Z. W. and Saunders, S. C. (1969) A new family of life distributions. Journal of Applied Probability, 6, 319--327.
Birnbaum, Z. W. and Saunders, S. C. (1969) Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability, 6, 328--347.
Engelhardt, M. and Bain, L. J. and Wright, F. T. (1981) Inferences on the parameters of the Birnbaum-Saunders fatigue life distribution based on maximum likelihood estimation. Technometrics, 23, 251--256.
Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, 2nd edition, Volume 2, New York: Wiley.
pbisa
,
inv.gaussianff
.x = runif(n <- 1000)
y = rbisa(n, shape=exp(-0.5+x), scale=exp(1.5))
fit = vglm(y ~ x, bisa(zero=2), trace=TRUE)
coef(fit, matrix=TRUE)
y = rbisa(n=1000, shape=exp(-0.5), scale=exp(0.5))
fit = vglm(y ~ 1, bisa, trace=TRUE)
hist(y, prob=TRUE, ylim=c(0,0.5), col="lightblue")
coef(fit, matrix=TRUE)
mean(y)
fitted(fit)[1:4]
x = seq(0, max(y), len=200)
lines(x, dbisa(x, Coef(fit)[1], Coef(fit)[2]), col="red", lwd=2)
Run the code above in your browser using DataLab