## following the lars diabetes example
data(diabetes)
attach(diabetes)
## Ordinary Least Squares regression
reg.ols <- regress(x, y)
## Lasso regression
reg.las <- regress(x, y, method="lasso")
## Bayesian Lasso regression
reg.blas <- blasso(x, y, T=1000)
## summarize the beta (regression coefficients) estimates
plot(reg.blas, burnin=200)
points(drop(reg.las$b), col=2, pch=19)
points(drop(reg.ols$b), col=3, pch=18)
abline(h=0, lty=2, lwd=2)
legend("topleft", c("lasso", "lsr"), col=2:3, pch=19:18)
## summarize s2
plot(reg.blas, burnin=200, which="s2")
## summarize the posterior distribution of lambda2 and s2
detach(diabetes)
Run the code above in your browser using DataLab