data(grad)
fit <- blm(admit~factor(rank),grad)
fit
summary(fit)
ci(fit,c(1,0,0,0)) #PROB GRAD SCHOOL ADMISSION
#FOR STUDENTS FROM MOST PRESTIGIOUS SCHOOL
### INCLUDE FACTORS FOR UNDERGRAD GPA AND GRE AND SUPPLY INITIAL VALUES
fit2 <- blm(admit~I(scale(gre))+I(scale(gpa))+factor(rank),grad)
fit2
summary(fit2)
### IMPROVEMENT IN AIC USING 2 DEGREES OF FREEDOM
summary(fit)$AIC-summary(fit2)$AIC
### IF FIT WITH ADAPTIVE BARRIER METHOD
### STANDARD ERROR MIGHT BE INCORRECT WHEN CONSTRAINTS ARE ACTIVE
fit2 <- blm(admit~I(scale(gre))+I(scale(gpa))+factor(rank),grad,augmented=FALSE)
fit2
## INTERCEPT CI USING LOGIT-TRANSFORM METHOD
ci(fit2,c(1,0,0,0,0,0),coef=TRUE,method="logit",average=c(FALSE,rep(TRUE,5)))
Run the code above in your browser using DataLab