powered by
Weight of evidence and information value. Currently avialable for categorical predictors only.
blr_woe_iv(data, predictor, response, digits = 4, ...)# S3 method for blr_woe_iv plot( x, title = NA, xaxis_title = "Levels", yaxis_title = "WoE", bar_color = "blue", line_color = "red", print_plot = TRUE, ... )
# S3 method for blr_woe_iv plot( x, title = NA, xaxis_title = "Levels", yaxis_title = "WoE", bar_color = "blue", line_color = "red", print_plot = TRUE, ... )
A tibble or data.frame.
tibble
data.frame
Predictor variable; column in data.
data
Response variable; column in data.
Number of decimal digits to round off.
Other inputs.
An object of class blr_segment_dist.
blr_segment_dist
Plot title.
X axis title.
Y axis title.
Color of the bar.
Color of the horizontal line.
logical; if TRUE, prints the plot else returns a plot object.
TRUE
A tibble.
Siddiqi N (2006): Credit Risk Scorecards: developing and implementing intelligent credit scoring. New Jersey, Wiley.
Other bivariate analysis procedures: blr_bivariate_analysis(), blr_segment_dist(), blr_segment_twoway(), blr_segment(), blr_woe_iv_stats()
blr_bivariate_analysis()
blr_segment_dist()
blr_segment_twoway()
blr_segment()
blr_woe_iv_stats()
# NOT RUN { # woe and iv k <- blr_woe_iv(hsb2, female, honcomp) k # plot woe plot(k) # }
Run the code above in your browser using DataLab