bn.fit(x, data, method = "mle", ..., debug = FALSE)
custom.fit(x, dist, ordinal)
bn.net(x, debug = FALSE)
bn
(for bn.fit
and custom.fit
)
or an object of class bn.fit
(for bn.net
).x
. See below.mle
for Maximum
Likelihood parameter estimation or bayes
for Bayesian
parameter estimation (currently implemented only for discrete data).bn.fit.onode
)
instead of unordered factors (bn.fit.dnode
).TRUE
a lot of debugging output
is printed; otherwise the function is completely silent.bn.fit
returns an object of class bn.fit
, bn.net
an object of class bn
. See bn class
and
bn.fit class
for details.bn.fit
fits the parameters of a Bayesian network given its
structure and a data set; bn.net
returns the structure underlying
a fitted Bayesian network. An in-place replacement method is available to change the parameters of each
node in a bn.fit
object; see the examples for discrete, continuous and
hybrid networks below. For a discrete node (class bn.fit.dnode
or
bn.fit.onode
), the new parameters must be in a table
object.
For a Gaussian node (class bn.fit.gnode
), the new parameters can be
defined either by an lm
, glm
or pensim
object (the
latter is from the penalized
package) or in a list with elements named
coef
, sd
and optionally fitted
and resid
. For
a conditional Gaussian node (class bn.fit.cgnode
), the new parameters
can be defined by a list with elements named coef
, sd
and
optionally fitted
, resid
and configs
. In both cases
coef
should contain the new regression coefficients, sd
the
standard deviation of the residuals, fitted
the fitted values and
resid
the residuals. configs
should contain the configurations
if the discrete parents of the conditional Gaussian node, stored as a
factor.
custom.fit
takes a set of user-specified distributions and their
parameters and uses them to build a bn.fit
object. Its purpose is
to specify a Bayesian network (complete with the parameters, not only
the structure) using knowledge from experts in the field instead of
learning it from a data set. The distributions must be passed to the
function in a list, with elements named after the nodes of the network
structure x
. Each element of the list must be in one of the
formats described above for in-place replacement.
bn.fit utilities
, bn.fit plots
.data(learning.test)
# learn the network structure.
res = gs(learning.test)
# set the direction of the only undirected arc, A - B.
res = set.arc(res, "A", "B")
# estimate the parameters of the Bayesian network.
fitted = bn.fit(res, learning.test)
# replace the parameters of the node B.
new.cpt = matrix(c(0.1, 0.2, 0.3, 0.2, 0.5, 0.6, 0.7, 0.3, 0.1),
byrow = TRUE, ncol = 3,
dimnames = list(B = c("a", "b", "c"), A = c("a", "b", "c")))
fitted$B = as.table(new.cpt)
# the network structure is still the same.
all.equal(res, bn.net(fitted))
# learn the network structure.
res = hc(gaussian.test)
# estimate the parameters of the Bayesian network.
fitted = bn.fit(res, gaussian.test)
# replace the parameters of the node F.
fitted$F = list(coef = c(1, 2, 3, 4, 5), sd = 3)
# set again the original parameters
fitted$F = lm(F ~ A + D + E + G, data = gaussian.test)
# discrete Bayesian network from expert knowledge.
net = model2network("[A][B][C|A:B]")
cptA = matrix(c(0.4, 0.6), ncol = 2, dimnames = list(NULL, c("LOW", "HIGH")))
cptB = matrix(c(0.8, 0.2), ncol = 2, dimnames = list(NULL, c("GOOD", "BAD")))
cptC = c(0.5, 0.5, 0.4, 0.6, 0.3, 0.7, 0.2, 0.8)
dim(cptC) = c(2, 2, 2)
dimnames(cptC) = list("C" = c("TRUE", "FALSE"), "A" = c("LOW", "HIGH"),
"B" = c("GOOD", "BAD"))
cfit = custom.fit(net, dist = list(A = cptA, B = cptB, C = cptC))
# for ordinal nodes it is nearly the same.
cfit = custom.fit(net, dist = list(A = cptA, B = cptB, C = cptC),
ordinal = c("A", "B"))
# Gaussian Bayesian network from expert knowledge.
distA = list(coef = c("(Intercept)" = 2), sd = 1)
distB = list(coef = c("(Intercept)" = 1), sd = 1.5)
distC = list(coef = c("(Intercept)" = 0.5, "A" = 0.75, "B" = 1.32), sd = 0.4)
cfit = custom.fit(net, dist = list(A = distA, B = distB, C = distC))
# conditional Gaussian Bayesian network from expert knowledge.
cptA = matrix(c(0.4, 0.6), ncol = 2, dimnames = list(NULL, c("LOW", "HIGH")))
distB = list(coef = c("(Intercept)" = 1), sd = 1.5)
distC = list(coef = matrix(c(1.2, 2.3, 3.4, 4.5), ncol = 2,
dimnames = list(c("(Intercept)", "B"), NULL)),
sd = c(0.3, 0.6))
cgfit = custom.fit(net, dist = list(A = cptA, B = distB, C = distC))
Run the code above in your browser using DataLab