
Given an internal mirt object estimate the bootstrapped standard errors. It may
be beneficial to run the computations using multi-core architecture (e.g., the parallel
package). Parameters are organized from the freely estimated values in mod2values(x)
(equality constraints will also be returned in the bootstrapped estimates).
boot.mirt(x, R = 100, technical = NULL, ...)
an estimated model object
number of draws to use (passed to the boot()
function)
technical arguments passed to estimation engine. See mirt
for details
additional arguments to be passed on to boot(...)
and estimation engine
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. 10.18637/jss.v048.i06
# NOT RUN {
# }
# NOT RUN {
#standard
mod <- mirt(Science, 1)
booted <- boot.mirt(mod, R=20)
plot(booted)
booted
#run in parallel using snow back-end using all available cores
mod <- mirt(Science, 1)
booted <- boot.mirt(mod, parallel = 'snow', ncpus = parallel::detectCores())
booted
# }
Run the code above in your browser using DataLab