data(efc)
bs <- bootstrap(efc, 100)
# now run models for each bootstrapped sample
bs$models <- lapply(bs$strap, function(x) lm(neg_c_7 ~ e42dep + c161sex, data = x))
# extract coefficient "dependency" from each model
bs$dependency <- unlist(lapply(bs$models, function(x) coef(x)[2]))
# get bootstrapped confidence intervals
boot_ci(bs$dependency)
# compare with model fit
fit <- lm(neg_c_7 ~ e42dep + c161sex, data = efc)
confint(fit)[2, ]
# compare coefficients
mean(bs$dependency)
coef(fit)[2]
# bootstrap() and boot_ci() work fine within pipe-chains
library(dplyr)
efc %>%
bootstrap(100) %>%
mutate(models = lapply(.$strap, function(x) {
lm(neg_c_7 ~ e42dep + c161sex, data = x)
})) %>%
mutate(dependency = unlist(lapply(.$models, function(x) coef(x)[2]))) %>%
boot_ci(dependency)
# extract coefficient "gender" from each model
bs$gender <- unlist(lapply(bs$models, function(x) coef(x)[3]))
# check p-value
boot_p(bs$gender)
summary(fit)$coefficients[3, ]
Run the code above in your browser using DataLab