bootdeg(sam.out, num.sam = sam.out$num.sam, n.boot = 1)
Oempdegreedistrib
.sam.out$num.sam
is greater than one. When num.sam
is an
integer, N, LSMI from 1 to N are taken from the input sam.out
.num.sam
where each element is a
vector containing the unique degree values sampled in each LSMI.n.boot
.sam.out$n.neigh
.lenght(num.sam)
x n.seeds
with
the numeric seed ids. Each row corresponds to one LSMI. The rows are
present in the same order as the ids in num.sam
.length(num.sam)
where each
element is vector containing the numeric ids of the nodes sampled
using the respective LSMI. The elements are present in the same
order as the ids in num.sam
.
Note: nodes_of_LSMI is unreported when n.neigh equals zero.Thompson, M. E., Ramirez Ramirez, L. L., Lyubchich, V. and Gel, Y. R. (2015), Using the bootstrap for statistical inference on random graphs. Can J Statistics. doi: 10.1002/cjs.11271
net <- artificial_networks[[1]]
sam.out <- Oempdegreedistrib(net = net, n.seeds = 40, n.neigh = 1, num.sam = 1)
a <- bootdeg(sam.out = sam.out, n.boot = 50)
Run the code above in your browser using DataLab