For the different interpretations of amounts or compositional data, a different type of boxplot is feasible. Thus different boxplots are drawn.
# S3 method for acomp
boxplot(x,fak=NULL,…,
xlim=NULL,ylim=NULL,log=TRUE,
panel=vp.logboxplot,dots=!boxes,boxes=TRUE,
notch=FALSE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,c("NM","TM",cn))
)
# S3 method for rcomp
boxplot(x,fak=NULL,…,
xlim=NULL,ylim=NULL,log=FALSE,
panel=vp.boxplot,dots=!boxes,boxes=TRUE,
notch=FALSE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,c("NM","TM",cn)))
# S3 method for aplus
boxplot(x,fak=NULL,…,log=TRUE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,
names(missingInfo)))
# S3 method for rplus
boxplot(x,fak=NULL,…,ylim=NULL,log=FALSE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,
names(missingInfo)))
vp.boxplot(x,y,...,dots=FALSE,boxes=TRUE,xlim=NULL,ylim=NULL,log=FALSE,
notch=FALSE,plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,c("NM","TM",cn)),
missingness=attr(y,"missingness") )
vp.logboxplot(x,y,...,dots=FALSE,boxes=TRUE,xlim,ylim,log=TRUE,notch=FALSE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,c("NM","TM",cn)),
missingness=attr(y,"missingness"))a data set
a factor to split the data set, not yet implemented in aplus and rplus
x-limits of the plot.
y-limits of the plot.
logical indicating whether ploting should be done on log scale
the panel function to be used or a list of multiple panel functions
further graphical parameters
a logical indicating whether the points should be drawn
a logical indicating whether the boxes should be drawn
used by pairs
logical, should the boxes be notched?
Logical indicating that missings should be displayed.
A formula providing a function call, which will be evaluated
within each panel with missings to plot the missingness situation. The
call can use the variables missingPlotRect, which provides a
rectangle to plot the information to in a par("usr") like
specification. In the rX is the current data
The missingness information as a result from
missingType of the full data information the panels could base there
missing plots on.
boxplot.aplus and boxplot.rplus are wrappers of bxp,
which just take into account the possible logarithmic scale of the data.
boxplot.acomp and boxplot.rcomp generate a matrix of box-plots, where
each cell represents the difference between the row and column variables. Such
difference is respectively computed as a log-ratio and a rest.
vp.boxplot and vp.logboxplot are only used as panel functions.
They should not be directly called.
# NOT RUN {
data(SimulatedAmounts)
boxplot(acomp(sa.lognormals))
boxplot(rcomp(sa.lognormals))
boxplot(aplus(sa.lognormals))
boxplot(rplus(sa.lognormals))
# And now with missing!!!
boxplot(acomp(sa.tnormals))
# }
Run the code above in your browser using DataLab