# NOT RUN {
data("brfss")
# }
# NOT RUN {
brfss1000 = brfss[sample(1:nrow(brfss), 1000),]
# Model 1: LCA
lca = glca(item(OBESE, PA300, FRTLT1A, VEGLT1A, SMOKER, DRNK30) ~ 1,
data = brfss1000, nclass = 3)
summary(lca)
# Model 2: MGLCA
mglca = glca(item(OBESE, PA300, FRTLT1A, VEGLT1A, SMOKER, DRNK30) ~ 1,
group = SEX, data = brfss1000, nclass = 3)
summary(mglca)
# Model 3: MGLCA with covariate(s)
mglcr = glca(item(OBESE, PA300, FRTLT1A, VEGLT1A, SMOKER, DRNK30) ~ REGION,
group = SEX, data = brfss1000, nclass = 3)
summary(mglcr)
coef(mglcr)
# Model 4: MLCA
mlca = glca(item(OBESE, PA300, FRTLT1A, VEGLT1A, SMOKER, DRNK30) ~ 1,
group = STATE, data = brfss1000, nclass = 3, ncluster = 2)
summary(mlca)
# Model 5: MLCA with level-1 covariate(s) only
mlcr = glca(item(OBESE, PA300, FRTLT1A, VEGLT1A, SMOKER, DRNK30) ~ SEX,
group = STATE, data = brfss1000, nclass = 3, ncluster = 2)
summary(mlcr)
coef(mlcr)
# Model 6: MLCA with level-1 and level-2 covariate(s)
# (SEX: level-1 covariate, PARTY: level-2 covariate)
mlcr2 = glca(item(OBESE, PA300, FRTLT1A, VEGLT1A, SMOKER, DRNK30) ~ SEX + PARTY,
group = STATE, data = brfss1000, nclass = 3, ncluster = 2)
summary(mlcr2)
coef(mlcr2)
# }
Run the code above in your browser using DataLab