These functions select a bandwidth sigma
for the kernel estimator of point process intensity
computed by density.ppp
or other appropriate functions.
They can be applied to a point pattern
belonging to any class "ppp"
, "lpp"
, "pp3"
or "ppx"
.
The bandwidth \(\sigma\) is computed by the rule of thumb
of Scott (1992, page 152, equation 6.42).
The bandwidth is proportional to \(n^{-1/(d+4)}\)
where \(n\) is the number of points and \(d\) is the number of
spatial dimensions.
This rule is very fast to compute. It typically produces a larger bandwidth
than bw.diggle
. It is useful for estimating
gradual trend.
If isotropic=FALSE
(the default), bw.scott
provides a
separate bandwidth for each coordinate axis, and the result of the
function is a vector, of length equal to the number of coordinates.
If isotropic=TRUE
, a single bandwidth value is computed
and the result is a single numeric value.
bw.scott.iso(X)
is equivalent to
bw.scott(X, isotropic=TRUE)
.
The default value of \(d\) is as follows:
class |
dimension |
"ppp" |
2 |
"lpp" |
1 |
"pp3" |
3 |
The use of d=1
for point patterns on a linear network
(class "lpp"
) was proposed by McSwiggan et al (2016)
and Rakshit et al (2019).