Learn R Programming

aqp (version 1.0)

ca630: Soil Data from the Central Sierra Nevada Region of California

Description

Site and laboratory data from soils sampled in the central Sierra Nevada Region of California.

Usage

data(ca630)

Arguments

source

http://ssldata.nrcs.usda.gov/

Details

These data were extracted from the NSSL database. `ca630` is a list composed of site and lab data, each stored as dataframes. These data are modeled by a 1:many (site:lab) relation, with the `pedon_id` acting as the primary key in the `site` table and as the foreign key in the `lab` table.

Examples

Run this code
data(ca630)
str(ca630)

# 2. promote to SoilProfileCollection
# combine site+horizon data into single DF
ca <- join(ca630$lab, ca630$site, type='inner')

# promote to SoilProfileCollection
depths(ca) <- pedon_key ~ hzn_top + hzn_bot

# extract site data
site(ca) <- ~ mlra + ssa + lon + lat + cntrl_depth_to_top + cntrl_depth_to_bot + sampled_taxon_name

# extract spatial data as SpatialPoints
coordinates(ca) <- ~ lon + lat
# assign CRS data
proj4string(ca) <- '+proj=latlong +datum=NAD83'

# check the result
ca

# 3. aggregate \%BS 7 for all profiles into 1 cm slices
a <- slab(ca, fm= ~ bs_7)

# 4. plot median & IQR by 1 cm slice
xyplot(
top ~ p.q50, data=a, lower=a$p.q25, upper=a$p.q75, 
ylim=c(160,-5), alpha=0.5, scales=list(alternating=1, y=list(tick.num=7)),
panel=panel.depth_function, prepanel=prepanel.depth_function,
ylab='Depth (cm)', xlab='Base Saturation at pH 7', 
par.settings=list(superpose.line=list(col='black', lwd=2))
)

# 4. aggregate \%BS at pH 8.2 for all profiles by MLRA, along 1 cm slices
# note that mlra is stored in @site
a <- slab(ca, mlra ~ bs_8.2)

xyplot(
top ~ p.q50, groups=factor(mlra, levels=c('18','22')) , data=a, lower=a$p.q25, upper=a$p.q75, 
ylim=c(160,-5), alpha=0.5, scales=list(y=list(tick.num=7, alternating=3), x=list(alternating=1)),
panel=panel.depth_function, prepanel=prepanel.depth_function,
ylab='Depth (cm)', xlab='Base Saturation at pH 8.2', 
par.settings=list(superpose.line=list(col=c('black','blue'), lty=c(1,2), lwd=2)),
auto.key=list(columns=2, title='MLRA', points=FALSE, lines=TRUE)
)


# 5. safely compute hz-thickness weighted mean CEC (pH 7)
head(lab.agg.cec_7 <- ddply(ca630$lab, .(pedon_key), 
.fun=summarise, CEC_7=wtd.mean(bs_7, weights=hzn_bot-hzn_top)))

# 6. extract a SPDF with horizon data along a slice at 25 cm
s.25 <- slice(ca, fm=25 ~ bs_7 + CEC7 + ex_acid)
spplot(s.25, zcol=c('bs_7','CEC7','ex_acid'))

# note that the ordering is preserved:
all.equal(s.25$pedon_key, profile_id(ca))

# 6.1 extract a data.frame with horizon data along a slices c(10,20,50)
s.multiple <- slice(ca, fm=c(10,20,50) ~ bs_7 + CEC7 + ex_acid)

# 7. Extract the 2nd horizon from all profiles as SPDF
ca.2 <- ca[, 2]

# 8. Extract the all horizons from profiles 1:10 as data.frame
ca.1.to.10 <- ca[1:10, ]

# basic plot method: profile plot
plot(ca.1.to.10, name='hzn_desgn')

Run the code above in your browser using DataLab