calc_OSLLxTxRatio(Lx.data, Tx.data, signal.integral, background.integral,
background.count.distribution = "non-poisson", sigmab)
NA
and no Lx/Tx ratio is calculated.poisson
or non-poisson
.
See details for further informationRLum.Results
.
Slot data
contains a list with the following structure:
$ LnLx
$ LnLx.BG
$ TnTx
$ TnTx.BG
$ Net_LnLx
$ Net_LnLx.Error
$ Net_TnTx.Error
$ LxTx
$ LxTx.Errordata.frame
is produced. The error calculation is done according to Galbraith (2002).
background.count.distribution
This argument allows selecting the distribution assumption that is used for
the error calculation. According to Galbraith (2002, 2014) the background
counts may be overdispersed (i.e. do not follow a poisson distribution, which
is assumed for the photomultiplier counts).
In that case (might be the normal case) it has to be accounted for the
overdispersion by estimating $\sigma^2$ (i.e. the overdispersion value).
Therefore the relative standard error is calculated as:
(a) poisson
$$rse(\mu_{S}) \approx \sqrt(Y_{0} + Y_{1}/k^2)/Y_{0} - Y_{1}/k$$
(b) non-poisson
$$rse(\mu_{S}) \approx \sqrt(Y_{0} + Y_{1}/k^2 + \sigma^2(1+1/k))/Y_{0} - Y_{1}/k$$Analyse_SAR.OSLdata
, plot_GrowthCurve
,
analyse_SAR.CWOSL
##load data
data(ExampleData.LxTxOSLData, envir = environment())
##calculate Lx/Tx ratio
results <- calc_OSLLxTxRatio(Lx.data, Tx.data, signal.integral = c(1:2),
background.integral = c(85:100))
##get results object
get_RLum.Results(results)
Run the code above in your browser using DataLab