Learn R Programming

SensoMineR (version 1.20)

carto: Preference Mapping Techniques

Description

Performs preference mapping techniques based on multidimensional exploratory data analysis.

Usage

carto(Mat, MatH, level = 0, regmod = 1, coord = c(1, 2), asp = 1, cex = 1.3, col = "steelblue4", font = 2, clabel = 0.8, label.j = FALSE, resolution = 200, nb.clusters = 0, graph.tree=TRUE,graph.corr=TRUE,graph.carto=TRUE, main=NULL,col.min=7.5,col.max=0)

Arguments

Mat
a data frame corresponding to the axes of the map
MatH
a data frame in which each row represent a product and each column represent the hedonic scores of a given consumer for the products
level
the number of standard deviations used in the calculation of the preference response surface for all the consumers
regmod
the type of regression model used in the calculation of the preference response surface for all the consumers. regmod = 1: quadratic model, regmod = 2: vector model, regmod = 3: circular model, regmod = 4: elliptical model
coord
a vector of length 2, the rank of the axis used to display the results if "manual" is not assigned to the option parameter
asp
if 1 is assigned to that parameter, the graphic displays are output in an orthonormal coordinate system
cex
cf. function par in the graphics package
col
cf. function par in the graphics package
font
cf. function par in the graphics package
clabel
cf. the ade4 package
label.j
boolean, if T then the labels of the panelists who gave the hedonic scores are displayed
resolution
resolution of the map
nb.clusters
number of clusters to use (by default, 0 and the optimal numer of clusters is calculated
graph.tree
boolean, if TRUE plots the tree in 2 dimensions
graph.corr
boolean, if TRUE plots the variables factor map
graph.carto
boolean, if TRUE plots the preference map
main
an overall title for the plot
col.min
define the color which match to the low levels of preference
col.max
define the color which match to the high levels of preference

Details

The preference mapping methods are commonly used in the fields of market research and research and development to explore and understand the structure and tendencies of consumer preferences, to link consumer preference information to other data and to predict the behavior of consumers in terms of acceptance of a given product. This function refers to the method introduced by M. Danzart. A response surface is computed per consumer; then according to certain threshold preference zones are delimited and finally superimposed.

References

Danzart M., Sieffermann J.M., Delarue J. (2004). New developments in preference mapping techniques: finding out a consumer optimal product, its sensory profile and the key sensory attributes. 7th Sensometrics Conference, July 27-30, 2004, Davis, CA.

See Also

MFA, GPA

Examples

Run this code
## Not run: 
# ## Example 1: carto for the sensory descriptors
# data(cocktail)
# res.pca <- PCA(senso.cocktail)
# res.carto <- carto(res.pca$ind$coord[,1:2], hedo.cocktail)
# 
# ## Example 2
# data(cocktail)
# res.mfa <- MFA(cbind.data.frame(senso.cocktail,compo.cocktail),
#     group=c(ncol(senso.cocktail),ncol(compo.cocktail)),
#     name.group=c("senso","compo"))
# res.carto <- carto(res.mfa$ind$coord[,1:2], hedo.cocktail)
# ## End(Not run)

Run the code above in your browser using DataLab