Distribution function and quantile function
of the gamma distribution.
Usage
cdfgam(x, para = c(1, 1))
quagam(f, para = c(1, 1))
Arguments
x
Vector of quantiles.
f
Vector of probabilities.
para
Numeric vector containing the parameters of the distribution,
in the order $\alpha, \beta$ (shape, scale).
Value
cdfgam gives the distribution function;
quagam gives the quantile function.
Details
The gamma distribution with
shape parameter $\alpha$ and
scale parameter $\beta$ has probability density function
$$f(x)={x^{\alpha-1} \exp(-x/\beta) \over \beta^\alpha \Gamma(\alpha)}$$
for $x\ge0$, where $\Gamma(.)$ is the gamma function.
See Also
gamma for the gamma function.
pgamma for the standard Rversion of the gamma distribution.
cdfpe3 for the Pearson type III distribution,
which generalizes the gamma distribution.