Learn R Programming

lmomco (version 2.3.1)

cdfkur: Cumulative Distribution Function of the Kumaraswamy Distribution

Description

This function computes the cumulative probability or nonexceedance probability of the Kumaraswamy distribution given parameters (\(\alpha\) and \(\beta\)) computed by parkur. The cumulative distribution function is $$F(x) = 1 - (1-x^\alpha)^\beta \mbox{,}$$ where \(F(x)\) is the nonexceedance probability for quantile \(x\), \(\alpha\) is a shape parameter, and \(\beta\) is a shape parameter.

Usage

cdfkur(x, para)

Arguments

x

A real value vector.

para

The parameters from parkur or vec2par.

Value

Nonexceedance probability (\(F\)) for \(x\).

References

Jones, M.C., 2009, Kumaraswamy's distribution---A beta-type distribution with some tractability advantages: Statistical Methodology, v. 6, pp. 70--81.

See Also

pdfkur, quakur, lmomkur, parkur

Examples

Run this code
# NOT RUN {
  lmr <- lmoms(c(0.25, 0.4, 0.6, 0.65, 0.67, 0.9))
  cdfkur(0.5,parkur(lmr))
# }

Run the code above in your browser using DataLab