Learn R Programming

lmomco (version 2.3.1)

cdfsla: Cumulative Distribution Function of the Slash Distribution

Description

This function computes the cumulative probability or nonexceedance probability of the Slash distribution given parameters (\(\xi\) and \(\alpha\)) of the distribution provided by parsla or vec2par. The cumulative distribution function is $$F(x) = \Phi(Y) - [\phi(0) - \phi(Y)]/Y \mbox{,}$$ for \(Y \ne 0\) and $$F(x) = 1/2 \mbox{,}$$ for \(Y = 0\), where \(f(x)\) is the probability density for quantile \(x\), \(Y = (x - \xi)/\alpha\), \(\xi\) is a location parameter, and \(\alpha\) is a scale parameter. The function \(\Phi(Y)\) is the cumulative distribution function of the Standard Normal distribution function, and \(\phi(Y)\) is the probability density function of the Standard Normal distribution.

Usage

cdfsla(x, para)

Arguments

x

A real value vector.

para

The parameters from parsla or vec2par.

Value

Nonexceedance probability (\(F\)) for \(x\).

References

Rogers, W.H., and Tukey, J.W., 1972, Understanding some long-tailed symmetrical distributions: Statistica Neerlandica, v. 26, no. 3, pp. 211--226.

See Also

pdfsla, quasla, lmomsla, parsla

Examples

Run this code
# NOT RUN {
  para <- c(12,1.2)
  cdfsla(50,vec2par(para,type='sla'))
# }

Run the code above in your browser using DataLab