## Not run:
# #############################################################################
# # EXAMPLE 1: DINO data example
# #############################################################################
#
# #***
# # Model 1: estimate DINO model with din
# mod1 <- din( sim.dino , q.matrix = sim.qmatrix , rule="DINO")
# # estimate classification reliability
# cdm.est.class.accuracy( mod1 , n.sims=5000)
# ## P_a P_a_sim P_c P_c_sim
# ## MLE 0.668 0.661 0.583 0.541
# ## MAP 0.807 0.785 0.717 0.670
# ## MAP_Skill1 0.924 NA 0.860 NA
# ## MAP_Skill2 0.786 NA 0.746 NA
# ## MAP_Skill3 0.937 NA 0.901 NA
#
# #***
# # Model 2: estimate DINO model with gdina
# mod2 <- gdina( sim.dino , q.matrix = sim.qmatrix , rule="DINO")
# # estimate classification reliability
# cdm.est.class.accuracy( mod2 )
# ## P_a P_c
# ## MLE 0.675 0.598
# ## MAP 0.832 0.739
# ## MAP_Skill1 0.960 0.925
# ## MAP_Skill2 0.629 0.618
# ## MAP_Skill3 0.823 0.729
#
# m1 <- mod1$coef[ , c("guess" , "slip" ) ]
# m2 <- mod2$coef
# m2 <- cbind( m1 , m2[ seq(1,18,2) , "est" ] ,
# 1 - m2[ seq(1,18,2) , "est" ] - m2[ seq(2,18,2) , "est" ] )
# colnames(m2) <- c("g.M1" , "s.M1" , "g.M2" , "s.M2" )
# ## > round( m2 , 3 )
# ## g.M1 s.M1 g.M2 s.M2
# ## Item1 0.109 0.192 0.109 0.191
# ## Item2 0.073 0.234 0.072 0.234
# ## Item3 0.139 0.238 0.146 0.238
# ## Item4 0.124 0.065 0.124 0.009
# ## Item5 0.125 0.035 0.125 0.037
# ## Item6 0.214 0.523 0.214 0.529
# ## Item7 0.193 0.514 0.192 0.514
# ## Item8 0.246 0.100 0.246 0.100
# ## Item9 0.201 0.032 0.195 0.032
# # Note that s (the slipping parameter) substantially differs for Item4
# # for DINO estimation in 'din' and 'gdina'
# ## End(Not run)
Run the code above in your browser using DataLab