Learn R Programming

RedeR (version 1.20.0)

cea: Co-expression analysis.

Description

Simple function for correlation analysis. This function computes a null distribution via permutation and returns the significant correlation values.

Usage

cea(x, sig=0.01, p.adj.method="fdr", cor.method="spearman", nper=1000, plotcea=TRUE, ...)

Arguments

x
A matrix or data frame.
sig
Significance threshold.
p.adj.method
Correction method passed to "p.adjust" function.
cor.method
Correlation method passed to "cor" function.
nper
Number of permutations.
plotcea
Logical value, option to plot density and the null distributions.
...
Additional arguments passed to plotcea option.

Value

An adjacency matrix with significant correlation values.

Details

Additional arguments:
n.breaks
If plotcea=TRUE, 'n.breaks' sets the number of histogram breaks (Default=100 ).
plotnull
If plotcea=TRUE, 'plotnull' sets whether to plot the null distribution (Default=TRUE ).

avnull
If plotcea=TRUE, 'avnull' takes the average null distribution (Default=TRUE ).

nullcol
If plotcea=TRUE, 'nullcol' sets the color of the null distribution (Default="black" ).

See Also

cor p.adjust

Examples

Run this code

data(ER.deg)
#--- a gene expression matrix
exp <- ER.deg$exp
#--- a sample from gx!! 
idx <- sample(1:nrow(exp))[1:100] 
exp <- exp[idx,]

## Not run: 
# 
# res <- cea(x=exp, nper=100) #ps set 'nper' for at least 1000
# ## End(Not run)

Run the code above in your browser using DataLab