Last chance! 50% off unlimited learning
Sale ends in
The cells_summary()
function is used to target the cells in a group summary
and it is useful when applying a footnote with tab_footnote()
or adding a
custom style with tab_style()
. The function is expressly used in each of
those functions' locations
argument. The 'summary' location is generated by
the summary_rows()
function.
cells_summary(
groups = everything(),
columns = everything(),
rows = everything()
)
The names of the groups that the summary rows reside in.
The names of the columns that are to be targeted.
The names of the rows that are to be targeted.
A list object with the classes cells_summary
and location_cells
.
Location helper functions can be used to target cells with virtually any
function that has a locations
argument. Here is a listing of all of the
location helper functions, with locations corresponding roughly from top to
bottom of a table:
cells_title()
: targets the table title or the table subtitle depending on
the value given to the groups
argument ("title"
or "subtitle"
).
cells_stubhead()
: targets the stubhead location, a cell of which is only
available when there is a stub; a label in that location can be created by
using the tab_stubhead()
function.
cells_column_spanners()
: targets the spanner column labels with the
spanners
argument; spanner column labels appear above the column labels.
cells_column_labels()
: targets the column labels with its columns
argument.
cells_row_groups()
: targets the row group labels in any available row
groups using the groups
argument.
cells_stub()
: targets row labels in the table stub using the rows
argument.
cells_body()
: targets data cells in the table body using intersections of
columns
and rows
.
cells_summary()
: targets summary cells in the table body using the
groups
argument and intersections of columns
and rows
.
cells_grand_summary()
: targets cells of the table's grand summary using
intersections of columns
and rows
cells_stub_summary()
: targets summary row labels in the table stub using
the groups
and rows
arguments.
cells_stub_grand_summary()
: targets grand summary row labels in the table
stub using the rows
argument.
cells_footnotes()
: targets all footnotes in the table footer (cannot be
used with tab_footnote()
).
cells_source_notes()
: targets all source notes in the table footer
(cannot be used with tab_footnote()
).
When using any of the location helper functions with an appropriate function
that has a locations
argument (e.g., tab_style()
), multiple locations
can be targeted by enclosing several cells_*()
helper functions in a
list()
(e.g., list(cells_body(), cells_grand_summary())
).
7-12
Other Helper Functions:
adjust_luminance()
,
cell_borders()
,
cell_fill()
,
cell_text()
,
cells_body()
,
cells_column_labels()
,
cells_column_spanners()
,
cells_footnotes()
,
cells_grand_summary()
,
cells_row_groups()
,
cells_source_notes()
,
cells_stub_grand_summary()
,
cells_stub_summary()
,
cells_stubhead()
,
cells_stub()
,
cells_title()
,
currency()
,
default_fonts()
,
escape_latex()
,
google_font()
,
gt_latex_dependencies()
,
html()
,
md()
,
pct()
,
px()
,
random_id()
# NOT RUN {
# Use `countrypops` to create a gt table; add
# some styling to the summary data cells with
# with `tab_style()`, using `cells_summary()`
# in `locations`
tab_1 <-
countrypops %>%
dplyr::filter(
country_name == "Japan",
year < 1970) %>%
dplyr::select(-contains("country")) %>%
dplyr::mutate(
decade = paste0(substr(year, 1, 3), "0s")
) %>%
dplyr::group_by(decade) %>%
gt(
rowname_col = "year",
groupname_col = "decade"
) %>%
fmt_number(
columns = population,
decimals = 0
) %>%
summary_rows(
groups = "1960s",
columns = population,
fns = list("min", "max"),
formatter = fmt_number,
decimals = 0
) %>%
tab_style(
style = list(
cell_text(style = "italic"),
cell_fill(color = "lightblue")
),
locations = cells_summary(
groups = "1960s",
columns = population,
rows = 1
)
) %>%
tab_style(
style = list(
cell_text(style = "italic"),
cell_fill(color = "lightgreen")
),
locations = cells_summary(
groups = "1960s",
columns = population,
rows = 2
)
)
# }
Run the code above in your browser using DataLab