Learn R Programming

RSDA (version 1.1)

cfa.Czz: Compute the eigenvectors

Description

Compute the eigenvectors to the matrix of row profiles.

Usage

cfa.Czz(sym.data, TFilas, TColumnas, VPRealz, d)

Arguments

sym.data
Should be a symbolic data table read with the function read.sym.table(...).
TFilas
Value of the total sum of the rows of the matrix.
TColumnas
Value of the total sum of the columns of the matrix.
VPRealz
The output of the function cfa.CVPRealz.
d
Eigenvalues.

Value

  • Return the eigenvectors.

References

Rodriguez, O. (2011). Correspondence Analysis for Symbolic MultiValued Variables. Workshop in Symbolic Data Analysis Namur, Belgium.

See Also

sym.cfa

Examples

Run this code
data(ex_cfa1) 
res<-cfa.totals(ex_cfa1)
Z<-cfa.MatrixZ(ex_cfa1,res$TotalRows,res$TotalColumns) 
svd<-eigen(Z)
MVPRealz<-cfa.CVPRealz(ex_cfa1,res$TotalRows,res$TotalColumns,res$Total,svd$vectors)
Mzz<-cfa.Czz(ex_cfa1,res$TotalRows,res$TotalColumns,MVPRealz,svd$values)
CMM<-cfa.minmax(ex_cfa1,res$TotalRows,res$TotalRowsMin,res$TotalRowsMax,
             res$TotalColumns,res$TotalColumnsMin,res$TotalColumnsMax,
             res$Total,MVPRealz,Mzz)

Run the code above in your browser using DataLab