
Last chance! 50% off unlimited learning
Sale ends in
chart.RollingQuantileRegression(Ra, Rb, width = 12,
Rf = 0, attribute = c("Beta", "Alpha", "R-Squared"),
main = NULL, na.pad = TRUE, ...) chart.RollingRegression(Ra, Rb, width = 12, Rf = 0,
attribute = c("Beta", "Alpha", "R-Squared"),
main = NULL, na.pad = TRUE, ...)
charts.RollingRegression(Ra, Rb, width = 12, Rf = 0,
main = NULL, legend.loc = NULL, event.labels = NULL,
...)
plot
chart.TimeSeries
charts.RollingRegression
displays alpha, beta, and R-squared estimates in three
aligned charts in a single device.The attribute parameter is probably the most confusing. In mathematical terms, the different choices yield the following:
Alpha - shows the y-intercept
Beta - shows the slope
of the regression line
R-Squared - shows the degree of
fit of the regression to the data
chart.RollingQuantileRegression
uses
rq
rather than
lm
for the regression, and may be
more robust to outliers in the data.
lm
rq
# First we load the data
data(managers)
chart.RollingRegression(managers[, 1, drop=FALSE],
managers[, 8, drop=FALSE], Rf = .04/12)
charts.RollingRegression(managers[, 1:6],
managers[, 8, drop=FALSE], Rf = .04/12,
colorset = rich6equal, legend.loc="topleft")
dev.new()
chart.RollingQuantileRegression(managers[, 1, drop=FALSE],
managers[, 8, drop=FALSE], Rf = .04/12)
# not implemented yet
#charts.RollingQuantileRegression(managers[, 1:6],
# managers[, 8, drop=FALSE], Rf = .04/12,
# colorset = rich6equal, legend.loc="topleft")
Run the code above in your browser using DataLab