checkArray(x, mode = NULL, any.missing = TRUE, d = NULL, min.d = NULL,
max.d = NULL)assertArray(x, mode = NULL, any.missing = TRUE, d = NULL, min.d = NULL,
max.d = NULL, add = NULL, .var.name = NULL)
assert_array(x, mode = NULL, any.missing = TRUE, d = NULL, min.d = NULL,
max.d = NULL, add = NULL, .var.name = NULL)
testArray(x, mode = NULL, any.missing = TRUE, d = NULL, min.d = NULL,
max.d = NULL)
test_array(x, mode = NULL, any.missing = TRUE, d = NULL, min.d = NULL,
max.d = NULL)
expect_array(x, mode = NULL, any.missing = TRUE, d = NULL, min.d = NULL,
max.d = NULL, info = NULL, label = NULL)
character(1)
]
Storage mode of the array. Arrays can hold vectors, i.e. logical(1)
]
Are missing values allowed? Default is TRUE
.integer(1)
]
Exact number of dimensions of array x
.
Default is NULL
(no check).integer(1)
]
Minimum number of dimensions of array x
.
Default is NULL
(no check).integer(1)
]
Maximum number of dimensions of array x
.
Default is NULL
(no check).AssertCollection
]
Collection to store assertions. See AssertCollection
.NULL
|| character(1)
]
Name of the checked object to print in error message. If NULL
,
the name will be heuristically determined via substitute
.expect_that
..var.name
, but passed down to expect_that
.TRUE
. If the check
is not successful, assertArray
/assert_array
throws an error message, testArray
/test_array
returns FALSE
,
and checkArray
returns a string with the error message.
The function expect_array
always returns an
expectation
.checkAtomicVector
,
checkAtomic
, checkCharacter
,
checkComplex
, checkDataFrame
,
checkDataTable
,
checkEnvironment
,
checkFactor
, checkFunction
,
checkIntegerish
,
checkInteger
, checkList
,
checkLogical
, checkMatrix
,
checkNumeric
, checkVector
checkArray(array(1:27, dim = c(3, 3, 3)), d = 3)
Run the code above in your browser using DataLab