Check if an argument is a vector
checkVector(x, strict = FALSE, any.missing = TRUE,
all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL,
unique = FALSE, names = NULL, null.ok = FALSE)check_vector(x, strict = FALSE, any.missing = TRUE,
all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL,
unique = FALSE, names = NULL, null.ok = FALSE)
assertVector(x, strict = FALSE, any.missing = TRUE,
all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL,
unique = FALSE, names = NULL, null.ok = FALSE,
.var.name = vname(x), add = NULL)
assert_vector(x, strict = FALSE, any.missing = TRUE,
all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL,
unique = FALSE, names = NULL, null.ok = FALSE,
.var.name = vname(x), add = NULL)
testVector(x, strict = FALSE, any.missing = TRUE, all.missing = TRUE,
len = NULL, min.len = NULL, max.len = NULL, unique = FALSE,
names = NULL, null.ok = FALSE)
test_vector(x, strict = FALSE, any.missing = TRUE,
all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL,
unique = FALSE, names = NULL, null.ok = FALSE)
[any] Object to check.
[logical(1)]
May the vector have additional attributes? If TRUE, mimics the behavior of
is.vector.
Default is FALSE which allows e.g. factors or data.frames
to be recognized as vectors.
[logical(1)]
Are vectors with missing values allowed? Default is TRUE.
[logical(1)]
Are vectors with only missing values allowed? Default is TRUE.
[integer(1)]
Exact expected length of x.
[integer(1)]
Minimal length of x.
[integer(1)]
Maximal length of x.
[logical(1)]
Must all values be unique? Default is FALSE.
[character(1)]
Check for names. See checkNamed for possible values.
Default is “any” which performs no check at all.
Note that you can use checkSubset to check for a specific set of names.
[logical(1)]
If set to TRUE, x may also be NULL.
In this case only a type check of x is performed, all additional checks are disabled.
[character(1)]
Name of the checked object to print in assertions. Defaults to
the heuristic implemented in vname.
[AssertCollection]
Collection to store assertion messages. See AssertCollection.
Depending on the function prefix:
If the check is successful, the functions
assertVector/assert_vector return
x invisibly, whereas
checkVector/check_vector and
testVector/test_vector return
TRUE.
If the check is not successful,
assertVector/assert_vector
throws an error message,
testVector/test_vector
returns FALSE,
and checkVector returns a string with the error message.
The function expect_vector always returns an
expectation.
Other basetypes: checkArray,
checkAtomicVector,
checkAtomic, checkCharacter,
checkComplex, checkDataFrame,
checkDate, checkDouble,
checkEnvironment,
checkFactor, checkFormula,
checkFunction,
checkIntegerish,
checkInteger, checkList,
checkLogical, checkMatrix,
checkNull, checkNumeric,
checkPOSIXct, checkRaw
Other atomicvector: checkAtomicVector,
checkAtomic
# NOT RUN {
testVector(letters, min.len = 1L, any.missing = FALSE)
# }
Run the code above in your browser using DataLab