Extract information from glht
, summary.glht
or
confint.glht
objects which is required to create
and plot compact letter displays of all pair-wise comparisons.
# S3 method for summary.glht
cld(object, level = 0.05, decreasing = FALSE, ...)
# S3 method for glht
cld(object, level = 0.05, decreasing = FALSE, ...)
# S3 method for confint.glht
cld(object, decreasing = FALSE, ...)
An object of class cld
, a list with items:
Values of the response variable of the original model.
Name of the response variable.
Values of the variable used to compute Tukey contrasts.
Weights used in the fitting process.
Predictions from the fitted model.
A logical indicating whether the fitted model contained covariates.
Vector of logicals indicating significant differences with hyphenated names that identify pair-wise comparisons.
An object of class glht
, summary.glht
or confint.glht
.
Significance-level to be used to term a specific pair-wise comparison significant.
logical. Should the order of the letters be increasing or decreasing?
additional arguments.
This function extracts all the information from glht
,
summary.glht
or confint.glht
objects that is required
to create a compact letter display of all pair-wise comparisons.
In case the contrast matrix is not of type "Tukey"
, an error
is issued. In case of confint.glht
objects, a pair-wise comparison
is termed significant whenever a particular confidence interval contains 0.
Otherwise, p-values are compared to the value of "level"
.
Once, this information is extracted, plotting of all pair-wise
comparisons can be carried out.
Hans-Peter Piepho (2004), An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons, Journal of Computational and Graphical Statistics, 13(2), 456--466.
glht
plot.cld
### multiple comparison procedures
### set up a one-way ANOVA
data(warpbreaks)
amod <- aov(breaks ~ tension, data = warpbreaks)
### specify all pair-wise comparisons among levels of variable "tension"
tuk <- glht(amod, linfct = mcp(tension = "Tukey"))
### extract information
tuk.cld <- cld(tuk)
### use sufficiently large upper margin
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
### plot
plot(tuk.cld)
par(old.par)
### now using covariates
data(warpbreaks)
amod2 <- aov(breaks ~ tension + wool, data = warpbreaks)
### specify all pair-wise comparisons among levels of variable "tension"
tuk2 <- glht(amod2, linfct = mcp(tension = "Tukey"))
### extract information
tuk.cld2 <- cld(tuk2)
### use sufficiently large upper margin
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
### plot using different colors
plot(tuk.cld2, col=c("black", "red", "blue"))
par(old.par)
### set up all pair-wise comparisons for count data
data(Titanic)
mod <- glm(Survived ~ Class, data = as.data.frame(Titanic), weights = Freq, family = binomial())
### specify all pair-wise comparisons among levels of variable "Class"
glht.mod <- glht(mod, mcp(Class = "Tukey"))
### extract information
mod.cld <- cld(glht.mod)
### use sufficiently large upper margin
old.par <- par(mai=c(1,1,1.5,1), no.readonly = TRUE)
### plot
plot(mod.cld)
par(old.par)
Run the code above in your browser using DataLab