temp <- c(-9.3,-8.2,-2.8,6.3,13.4,16.8,18.4,17,11.7,5.6,-1,-5.9)#
rain <- c(46,46,36,30,31,21,26,57,76,85,59,46)
climateGraph(temp, rain) # default settings
climateGraph(temp, rain, textprop=0) # no table written to the right
climateGraph(temp, rain, lty=3) # dotted background lines
# vertical lines instead of filled polygon:
climateGraph(temp, rain, arghumi=list(density=15, angle=90))
# fill color for arid without transparency:
climateGraph(temp, rain, argarid=list(col="gold"))
# for the Americans ;-) (axes should be different, though!):
climateGraph(temp, rain, units=c("\U00B0 F","in"))
rain <- c(23, 11, 4, 2, 10, 53, 40, 15, 21, 25, 29, 22)
# fix ylim if you want to compare diagrams of different stations:
climateGraph(temp, rain, ylim=c(-15, 50)) # works with two arid phases as well
rain <- c(54, 23, 5, 2, 5, 70, 181, 345, 265, 145, 105, 80) # with extrema
climateGraph(temp, rain) # August can be visually compared to June
climateGraph(temp, rain, compress=TRUE) # compressing extrema enables a better
# view of the temperature, but heigths of rain cannot be visually compared anymore
climateGraph(temp, rain, compress=TRUE, ylim=c(-10, 90))
# needs ylim in linearly continued temp units
climateGraph(temp, rain, compress=TRUE, argcomp=list(density=30, col=6))
## Not run:
# ## Rcmd check --as-cran doesn't like to open external devices such as pdf,
# ## so this example is excluded from running in the checks.
# setwd("C:/Users/berry/Desktop")
# pdf("ClimateGraph.pdf")
# climateGraph(temp, rain, main="Another Station\nlocated somewhere\n369 ft a sl")
# dev.off()
#
# # further German reading:
# browseURL("http://www.klimadiagramme.de/all.html")
#
#
# # One large Dataset:
# NOOAlink <- "http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/"
# browseURL(NOOAlink)
# # Find your Station here:
# browseURL(paste0(NOOAlink,"/station-inventories/allstations.txt")
#
# # Data from Roseburg, Oregon, where I once lived:
# download.file(destfile="Roseburg.txt", url=paste0("http://www1.ncdc.noaa.gov/",
# "pub/data/normals/1981-2010/products/station/USC00357331.normals.txt")
# RT <- read.table(file="Roseburg.txt", skip=11, nrows=1, as.is=TRUE)[1,-1]
# RT <- ( as.numeric(substr(RT,1,3))/10 - 32) * 5/9 # converted to degrees C
# RP <- read.table(file="Roseburg.txt", skip=580, nrows=1, as.is=TRUE)[1,-1]
# RP <- as.numeric(substr(RP,1,nchar(RP)-1))/100*25.4
# meta <- read.table(file="Roseburg.txt", nrows=5, as.is=TRUE, sep=":")
# meta <- paste(meta[1,2], paste(meta[3:4 ,2], collapse=" /"), meta[5,2], sep="\n")
#
# climateGraph(RT, RP, main=meta)
# climateGraph(RT, RP, main=meta, compress=TRUE)
#
#
# # abstract mean values from weather data
#
# browseURL("http://www.dwd.de") # Klima Umwelt - Klimadaten - online,frei
# # - Klimadaten Deutschland - Messstationen - Tageswerte
#
# download.file(destfile="Potsdam.zip", url= paste(
# "http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU2/KU21/",
# "klimadaten/german/download/tageswerte/kl__10379__hist__txt,templateId=raw,",
# "property=publicationFile.zip/kl_10379_hist_txt.zip", sep=""))
#
# unzip("Potsdam.zip", exdir="PotsdamKlima")
# pk <- read.table(dir("PotsdamKlima", pattern="^[p]", full.names=TRUE), sep=";",
# header=TRUE, na="-999")
# dates <- strptime(pk$Mess_Datum, "%Y%m%d")
# temp <- tapply(pk$LUFTTEMPERATUR, INDEX=format(dates, "%m"), FUN=mean, na.rm=FALSE)
# precsums <- tapply(pk$NIEDERSCHLAGSHOEHE, INDEX=format(dates, "%Y-%m"), FUN=sum)
# eachmonth <- format(strptime(paste(names(precsums),"01"), "%Y-%m %d"),"%m")
# prec <- tapply(precsums, eachmonth, FUN=mean)
# meta <- paste("Potsdam\n", paste(range(dates), collapse=" to "), "\n", sep="")
#
# # If you want to add things later, use keeplayout and graphics.off() to reset par
# climateGraph(temp, prec, main=meta, ylim=c(-2, 45), keeplayout=TRUE)
# # Add Quartiles (as in boxplots): numerically sorted, 50% of the data lie inbetween
# T25 <- tapply(pk$LUFTTEMPERATUR, INDEX=format(dates, "%m"),
# FUN=quantile, na.rm=FALSE, probs=0.25)
# T75 <- tapply(pk$LUFTTEMPERATUR, INDEX=format(dates, "%m"),
# FUN=quantile, na.rm=FALSE, probs=0.75)
# arrows(x0=1:12, y0=T25, y1=T75, angle=90, code=3, col=2, len=0.1)
# #
# P25 <- tapply(precsums, eachmonth, FUN=quantile, na.rm=FALSE, probs=0.25)
# P75 <- tapply(precsums, eachmonth, FUN=quantile, na.rm=FALSE, probs=0.75)
# arrows(x0=1:12, y0=P25/2, y1=P75/2, angle=90, code=3, col=4, len=0, lwd=3, lend=1)
# title(main=c("","","IQR shown als lines"), col.main=8)
#
#
# # Comparison to diagrams in climatol
# install.packages("climatol")
# help(package="climatol")
# library(climatol)
# data(datcli)
# diagwl(datcli,est="Example station",alt=100,per="1961-90",mlab="en")
#
# ## End(Not run)
Run the code above in your browser using DataLab