Last chance! 50% off unlimited learning
Sale ends in
clip_data
clips the input sensor dataframe according to the given
start and stop time
clip_data(df, start_time, stop_time)
dataframe. Input dataframe of the multi-channel signal. The first column is the timestamps in POSXlct format and the following columns are accelerometer values.
POSXlct format or character. Start time for clipping. If it is a character, it should be recognizable by as.POSXlct function.
POSXlct format or character. Stop time for clipping. If it is a character, it should be recognizable by as.POSXlct function.
dataframe. The same format as the input dataframe.
This function is a utility function that was used in various part in the algorithm whenever we need to clip a dataframe.
This function accepts a dataframe of multi-channel signal, clips it according to the start_time and stop_time.
Other utility functions:
cut_off_signal()
,
interpolate_signal()
,
parse_epoch_string()
,
sampling_rate()
,
segment_data()
,
simulate_new_data()
# NOT RUN {
default_ops = options()
options(digits.secs=3)
# Use the provided sample data
df = sample_raw_accel_data
# Check the start time and stop time of the dataset
summary(df)
# Use timestamp string to clip 1 second data
start_time = "2016-01-15 11:01:00"
stop_time = "2016-01-15 11:01:01"
output = clip_data(df, start_time, stop_time)
summary(output)
# Use POSIXct timestamp to clip data
start_time = as.POSIXct("2016-01-15 11:01:00")
stop_time = as.POSIXct("2016-01-15 11:01:01")
output = clip_data(df, start_time, stop_time)
summary(output)
# If start and stop time is not in the range of the input data
# return empty data.frame
start_time = "2016-01-15 12:01:00"
stop_time = "2016-01-15 12:01:01"
output = clip_data(df, start_time, stop_time)
output
# Restore original options
options(default_ops)
# }
Run the code above in your browser using DataLab