Learn R Programming

mirt (version 1.19)

coef-method: Extract raw coefs from model object

Description

Return a list (or data.frame) of raw item and group level coefficients.

Usage

# S4 method for SingleGroupClass
coef(object, CI = 0.95, printSE = FALSE,
  rotate = "none", Target = NULL, digits = 3, IRTpars = FALSE,
  rawug = FALSE, as.data.frame = FALSE, simplify = FALSE,
  unique = FALSE, verbose = TRUE, ...)

Arguments

object

an object of class SingleGroupClass, MultipleGroupClass, or MixedClass

CI

the amount of converged used to compute confidence intervals; default is 95 percent confidence intervals

printSE

logical; print the standard errors instead of the confidence intervals?

rotate

see summary method for details. The default rotation is 'none'

Target

a dummy variable matrix indicting a target rotation pattern

digits

number of significant digits to be rounded

IRTpars

logical; convert slope intercept parameters into traditional IRT parameters? Only applicable to unidimensional models

rawug

logical; return the untransformed internal g and u parameters? If FALSE, g and u's are converted with the original format along with delta standard errors

as.data.frame

logical; convert list output to a data.frame instead?

simplify

logical; if all items have the same parameter names (indicating they are of the same class) then they are collapsed to a matrix, and a list of length 2 is returned containing a matrix of item parameters and group-level estimates

unique

return the vector of uniquely estimated parameters

verbose

logical; allow information to be printed to the console?

...

additional arguments to be passed

See Also

summary-method

Examples

Run this code
# NOT RUN {
# }
# NOT RUN {
dat <- expand.table(LSAT7)
x <- mirt(dat, 1)
coef(x)
coef(x, IRTpars = TRUE)
coef(x, simplify = TRUE)

#with computed information matrix
x <- mirt(dat, 1, SE = TRUE)
coef(x)
coef(x, printSE = TRUE)
coef(x, as.data.frame = TRUE)

#two factors
x2 <- mirt(Science, 2)
coef(x2)
coef(x2, rotate = 'varimax')

# }

Run the code above in your browser using DataLab