Obtain and print the summary
, (fixed effects) coefficients (coef
)
and credible interval (confint
) for an object of class 'JointAI'.
# S3 method for JointAI
summary(object, start = NULL, end = NULL,
thin = NULL, quantiles = c(0.025, 0.975), subset = NULL,
warn = TRUE, mess = TRUE, ...)# S3 method for summary.JointAI
print(x, digits = max(3, .Options$digits - 4),
...)
# S3 method for JointAI
coef(object, start = NULL, end = NULL, thin = NULL,
subset = NULL, warn = TRUE, mess = TRUE, ...)
# S3 method for JointAI
confint(object, parm = NULL, level = 0.95,
quantiles = NULL, start = NULL, end = NULL, thin = NULL,
subset = NULL, warn = TRUE, mess = TRUE, ...)
# S3 method for JointAI
print(x, digits = max(4, getOption("digits") - 4), ...)
object inheriting from class 'JointAI'
the first iteration of interest (see window.mcmc
)
the last iteration of interest (see window.mcmc
)
thinning interval (see window.mcmc
)
posterior quantiles
logical; should warnings be given? Default is
TRUE
. Note: this applies only to warnings
given directly by JointAI.
logical; should messages be given? Default is
TRUE
. Note: this applies only to messages
given directly by JointAI.
currently not used
an object of class summary.JointAI
or JointAI
minimal number of significant digits, see
print.default
.
same as subset
confidence level (default is 0.95)
The model fitting functions lm_imp
,
glm_imp
, clm_imp
, lme_imp
,
glme_imp
, survreg_imp
and coxph_imp
,
and the vignette
Parameter Selection
for examples how to specify the parameter subset
.
# NOT RUN {
mod1 <- lm_imp(y~C1 + C2 + M2, data = wideDF, n.iter = 100)
summary(mod1)
coef(mod1)
confint(mod1)
# }
Run the code above in your browser using DataLab