Last chance! 50% off unlimited learning
Sale ends in
## S3 method for class 'gets':
coef(object, spec = NULL, ...)
## S3 method for class 'gets':
fitted(object, spec = NULL, ...)
## extraction function for class 'gets'
paths(object, ...)
## S3 method for class 'gets':
print(x, ...)
## S3 method for class 'gets':
residuals(object, std = NULL, ...)
## S3 method for class 'gets':
summary(object, ...)
## extraction function for class 'gets'
terminals(object, ...)
## S3 method for class 'gets':
vcov(object, spec = NULL, ...)
getsm
or
getsm
zoo
objectlist
with the paths searched (each number refers to the regressor ordering in the GUM)zoo
object with the residualsgets
objectlist
with the terminal models (each number refers to the regressor ordering in the GUM)getsm
, getsv
##Simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 100)
##Simulate four independent Gaussian regressors:
xregs <- matrix(rnorm(4*100), 100, 4)
##estimate an AR(2) with intercept and four conditioning
##regressors in the mean, and log-ARCH(3) in the variance:
mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3)
##undertake General-to-Specific (GETS) model selection of
##the mean:
meanmod <- getsm(mymod)
##undertake General-to-Specific (GETS) model selection of
##the log-variance:
varmod01 <- getsv(mymod)
##undertake General-to-Specific (GETS) model selection of
##the log-variance (simplified model):
varmod02 <- getsv(meanmod)
##print results:
print(meanmod)
print(varmod01)
print(varmod02)
##print the entries of object 'gets':
summary(meanmod)
summary(varmod01)
summary(varmod02)
##extract coefficients of the simplified (specific) model:
coef(meanmod) #mean spec
coef(varmod01) #log-variance spec 1
coef(varmod02) #log-variance spec 2
##extract the paths searched:
paths(meanmod) #mean
paths(varmod01) #log-variance spec 1
paths(varmod02) #log-variance spec 2
##extract the terminal models:
terminals(meanmod) #mean
terminals(varmod01) #log-variance spec 1
terminals(varmod02) #log-variance spec 2
##extract variance-covariance matrix of simplified
##(specific) model:
vcov(meanmod) #mean spec
vcov(varmod01) #log-variance spec 1
vcov(varmod02) #log-variance spec 2
##extract and plot the fitted values:
mfit <- fitted(meanmod) #mean fit
plot(mfit)
vfit01 <- fitted(varmod01) #variance fit
plot(vfit01)
vfit02 <- fitted(varmod02) #variance fit
plot(vfit02)
##extract and plot residuals:
epshat <- residuals(meanmod) #mean residuals
plot(epshat)
zhat01 <- residuals(varmod01) #standardised residuals
plot(zhat01)
zhat02 <- residuals(varmod02) #standardised residuals
plot(zhat02)
Run the code above in your browser using DataLab