cointRegIM(x, y, deter, selector = 1, t.test = TRUE, kernel = c("ba", "pa", "qs", "tr"), bandwidth = c("and", "nw"), check = TRUE, ...)numeric | matrix | data.frame]
RHS variables on which to apply the IM-OLS estimation (see Details).numeric | matrix | data.frame]
LHS variable(s) on which to apply the IM-OLS estimation (see Details).
Has to be one-dimensional. If matrix, it may
have only one row or column, if data.frame just one column.numeric | matrix | data.frame |
NULL]
Deterministic variable to include in the equation (see Details). If it's
NULL or missing, no deterministic variable is included in the model.numeric]
Choose the regression type: 1, 2, or c(1, 2)
(see Details). Default is 1.logical]
Wheather to calculate t-values for the coefficients of the first
regression. Default is TRUE. Attention: Needs more calculation
time, because an additional FM-OLS model has to be fitted to get the
long-run variance.character(1)]
The kernel function to use for calculating the long-run variance.
Default is Bartlett kernel ("ba"), see Details for alternatives.character(1) | integer(1)]
The bandwidth to use for calculating the long-run variance.
Default is Andrews (1991) ("and"), an alternative is Newey West
(1994) ("nw").logical]
Wheather to check (and if necessary convert) the arguments.
See checkVars for further information.getBandwidthNW.cointReg]. List with components:
delta [numeric]beta [numeric]gamma [numeric]theta [numeric]beta, deltasd.theta [numeric]theta coefficientst.theta [numeric]theta coefficientsp.theta [numeric]theta coefficientstheta.all [numeric]beta, delta, gammaresiduals [numeric]u.plus.u.plus [numeric]residuals above.omega.u.v [numeric]cointRegFM (in case of argument t.test is TRUE)
or NULLvarmat [matrix]Omega [matrix]NULL (no long-run variance matrix for this regression type)bandwidth [list]number and name of bandwidth if t.test = TRUEkernel [character]t.test = TRUEdelta2 [numeric]beta2 [numeric]gamma2 [numeric]lambda2 [numeric]theta2 [numeric]beta2, delta2, gamma2 and
lambda2 for regression type 2u.plus2 [numeric]The equation for which the IM-OLS estimator is calculated (type 2): $$S_y = \delta \cdot S_D + \beta \cdot S_x + \gamma \cdot x + \lambda \cdot Z + u$$ where $S[y]$, $S[x]$ and $S[D]$ are the cumulated sums of $y$, $x$ and $D$ (with $D$ as the deterministics matrix) and $Z$ as defined in equation (19) in Vogelsang and Wagner (2015). Then $\theta = (\delta', \beta', \gamma', \lambda')'$ is the full parameter vector.
cointRegD,
cointRegFM, cointReg,
plot.cointReg, print.cointReg
set.seed(1909)
x1 = cumsum(rnorm(100, mean = 0.05, sd = 0.1))
x2 = cumsum(rnorm(100, sd = 0.1)) + 1
x3 = cumsum(rnorm(100, sd = 0.2)) + 2
x = cbind(x1, x2, x3)
y = x1 + x2 + x3 + rnorm(100, sd = 0.2) + 1
deter = cbind(level = 1, trend = 1:100)
test = cointRegIM(x, y, deter, selector = c(1, 2), t.test = TRUE,
kernel = "ba", bandwidth = "and")
print(test)
Run the code above in your browser using DataLab