data(tea)
new.lambdas <- seq(260, 500, by = 2)
tea <- lapply(tea.raw, preprocess)
tea.split <- splitTimeWindow(tea, c(12, 14), overlap = 10)
Xl <- tea.split[[3]]
Xl.opa <- opa(Xl, 10)
Xl.als <- doALS(Xl, Xl.opa)
smallC <- smallComps(Xl.als, 5)
smallC
Xl.als2 <- removeComps(Xl.als, smallC$smallC)
summary(Xl.als)
summary(Xl.als2)
## smaller models, but with a higher fit error...
## another way to decrease the number of components, this example
## not particularly deep, just to show how it can be done:
Xl.als3 <- combineComps(Xl.als, list(1, 2, 3:4, 5, c(6, 10), 6, 7:9))
summary(Xl.als3)
Run the code above in your browser using DataLab