Usage
## S3 method for class 'splitppx':
[(x, \dots)
## S3 method for class 'splitppx':
[(x, \dots) <- value
acedist.show(X, Y, n, d, timelag = 0)
acedist.noshow(X, Y, n, d)
active.interactions(object)
adjustthinrange(ur,vstep,vr)
affinexy(X, mat = diag(c(1, 1)), vec = c(0, 0), invert=FALSE)
affinexypolygon(p, mat, vec, detmat)
anycrossing.psp(A,B)
apply23sum(x)
applytolayers(L, FUN, ...)
area.xypolygon(polly)
areadelta2(X, r, ...)
areaGain.diri(u, X, r, ..., W=as.owin(X))
areaGain.grid(u, X, r, ..., W=NULL, ngrid=spatstat.options("ngrid.disc"))
areaLoss.diri(X, r, ..., W=as.owin(X), subset=NULL)
areaLoss.grid(X, r, ..., W=as.owin(X), subset=NULL,
                         method = c("count", "distmap"),
                         ngrid = spatstat.options("ngrid.disc"),
                         exact = FALSE)
assemble.plot.objects(xlim, ylim, ..., lines, polygon)
AsymmDistance.psp(X, Y, metric, method)
as.breakpts(...)
## S3 method for class 'units':
as.character(x, \dots)
## S3 method for class 'fv':
as.data.frame(x, \dots)
## S3 method for class 'bw.optim':
as.data.frame(x, \dots)
## S3 method for class 'hyperframe':
as.list(x, \dots)
## S3 method for class 'linim':
as.im(X, \dots)
as.listof(x)
as.units(s)
as2vector(x)
augment.msr(x, ..., sigma)
badprobability(x, NAvalue)
bbEngine(...)
bermantestEngine(model, covariate, which, alternative, ..., modelname, covname, dataname)
bdrylength.xypolygon(polly)
bdry.mask(W)
bind.ratfv(x, numerator, denominator, labl, desc, preferred, ratio)
blankcoefnames(x)
blockdiagmatrix(...)
blockdiagarray(...)
bounding.box3(...)
break.holes(x, splitby, depth, maxdepth)
breakpts(val, maxi, even = FALSE, npos = NULL, step = NULL)
breakpts.from.r(r)
bt.frame(Q, trend=~1, interaction=NULL, ..., covariates=NULL,
         correction="border", rbord=0, use.gam=FALSE, allcovar=FALSE)
bw.optim(cv, h, iopt, ..., cvname, hname, criterion)
cannot.update(...)
cartesian(pp, markset, fac = TRUE)
cat.factor(..., recursive=FALSE)
cellmiddles(W, nx, ny, npix, distances)
censtimeCDFest(o, cc, d, breaks, ...,
     KM, RS, HAN, RAW, han.denom, tt, pmax)
change.default.expand(x, newdefault)
checkfields(X,L)          
check.finite(x, context, xname, fatal, usergiven)
check.hist.lengths(hist,breaks)
check.named.list(x, nam, context, namopt)
check.named.vector(x, nam, context, namopt)
check.named.thing(x, nam, namopt, xtitle, valid, type, context, fatal)
check.nvector(v, npoints, fatal, things, naok, warn)
check.nmatrix(m, npoints, fatal, things, naok, squarematrix, matchto, warn)
check.1.integer(x, context, fatal)
check.1.real(x, context, fatal)
check.range(x, fatal)
check.testfun(f, f1, X)
clarkevansCalc(X, correction, clipregion, working)
clip.psp(x, window, check=TRUE)
cliprect.psp(x, window)
clippoly.psp(s, window)
closethresh(X,R,S,ordered)
## S3 method for class 'summary.ppm':
coef(object, \dots)
coerce.marks.numeric(X, warn)
## S3 method for class 'rat':
compatible(A, B, \dots)complaining(whinge, fatal, value)
compileCDF(D, B, r, ..., han.denom, check)
compileK(D, r, weights, denom, check, ratio, fname)
compilepcf(D, r, weights, denom, check, endcorrect, ..., fname)
conform.ratfv(x)
crosspairquad(Q,rmax,what)
cobble.xy(x, y, f, fatal, ...)
codetime(x, hms, what)
commasep(x, join, flatten)
conform.imagelist(X, Zlist)
countingweights(id, areas, check = TRUE)
damaged.ppm(object)
data.mppm(x)
datagen.runifpointOnLines(n, L)
datagen.runifpoisppOnLines(lambda, L)
datagen.rpoisppOnLines(lambda, L, lmax, ..., check=TRUE)
default.clipwindow(object, epsilon)
default.n.tiling(X, nd, ntile, npix, eps, random, quasi, verbose)
default.ntile(X)
deltasuffstat(model, ..., restrict, dataonly, force)
dflt.redraw(button, name, env)
densitycrossEngine(Xdata, Xquery, sigma, ...,
                    weights, edge, varcov,
                    diggle, sorted)
densitypointsEngine(x, sigma, ...,
                    weights, edge, varcov,
                    leaveoneout, diggle, sorted)
diagnose.ppm.engine(object, ..., type, typename, opt,
                         sigma, rbord, compute.sd,
                         compute.cts, rv, oldstyle, splineargs)
digital.volume(range, nval, vside)
dilate.owin(...)
## S3 method for class 'fasp':
dim(x)
## S3 method for class 'hyperframe':
dim(x)
## S3 method for class 'im':
dim(x)
## S3 method for class 'msr':
dim(x)
## S3 method for class 'fasp':
dimnames(x)
## S3 method for class 'fasp':
dimnames(x) <- value
## S3 method for class 'msr':
dimnames(x)
distpl(p, l)               
distppl(p, l)
distppll(p, l, mintype, method, listit)
distppllmin(p, l, big)
distributecbind(x)
dist2dpath(dist, method="C")
divisors(n)
do.as.im(x, action, ..., W, eps, dimyx, xy, na.replace)
do.call.matched(fun, arglist, funargs, extrargs, matchfirst, sieve, skipargs)
do.call.plotfun(fun, arglist, ...)
do.istat(panel)
doMultiStraussHard(iradii, hradii, types)
dotexpr.to.call(expr, dot, evaluator)
dropifsingle(x)
emptywindow(w)
ensure2vector(x)
ensure3Darray(x)
envelopeEngine(X, fun, simul,
           nsim=99, nrank=1, ..., 
           verbose=TRUE, clipdata=TRUE, 
           transform=NULL, global=FALSE, ginterval=NULL,
           savefuns=FALSE, savepatterns=FALSE, saveresultof=NULL,
           weights=NULL,
           nsim2=nsim, VARIANCE=FALSE, nSD=2,
           Yname=NULL, maxnerr=nsim, internal=NULL, cl=NULL,
           envir.user=envir.user, expected.arg="r", do.pwrong=FALSE)
envelopeProgressData(X, fun, ..., expo, normalize, deflate)
envelopeTest(X, ...,
            power, rinterval, use.theo, tie.rule,
            save.envelope, savefuns, savepatterns,
            Xname, verbose, internal)
## S3 method for class 'matrix':
envelope(Y, \dots, rvals, observed, theory, funX,
      nsim, nsim2, jsim, jsim.mean,
      type, csr, use.theory, nrank, ginterval, nSD,
      savefuns, check, Yname, do.pwrong, weights, precomputed)
equalpairs(U, X, marked=FALSE)
equalpairs.quad(Q)
equals.quad(Q)          
equalsfun.quad(Q)          
eratosthenes(nmax, startset)
erodemask(w,r,strict)
erode.owin(...)
evalCovar(model, covariate, ...)
## S3 method for class 'ppm':
evalCovar(model, covariate, \dots,
          dimyx, eps, jitter, modelname, covname, dataname) 
## S3 method for class 'lppm':
evalCovar(model, covariate, \dots,
          eps, nd, jitter, modelname, covname, dataname)
evalCovariate(covariate, locations)
evalInteraction(X,P,E,interaction,correction,...,precomputed,savecomputed)
evalInterEngine(X,P,E,interaction,correction,...,precomputed,savecomputed)
evalPairPotential(X,P,E,pairpot,potpars,R)
even.breaks.owin(w)
evenly.spaced(x, tol)
exactdt(X, ...)              
exactPdt(w)
expand.polynom(f)
expandwinPerfect(W, expand, amount)
explain.ifnot(expr, context)
## S3 method for class 'slrm':
extractAIC(fit, scale = 0, k = 2, \dots)
extractAtomicQtests(x)
fakecallstring(fname, parlist)
fakemaintitle(bb, main, ...)
fave.order(x)
f3engine(x, y, z, box, vside, range, nval, correction)
f3Cengine(x, y, z, box, vside, rmax, nrval)
fasp(fns, which, formulae, dataname, title, rowNames, colNames, checkfv)
findbestlegendpos(...)
findCovariate(covname, scope, scopename=NULL)
findcbind(root, depth, maxdepth)
firstfactor(x)
fii(interaction, coefs, Vnames, IsOffset)
fillNA(x, value)
flatfname(x)
flipxypolygon(p)
forbidNA(x, context, xname, fatal, usergiven)
forbid.logi(object)
FormatFaspFormulae(f, argname)
fvlabels(x, expand=FALSE)
fvlabels(x) <- value
fvlabelmap(x, dot=TRUE)
fvlegend(object, elang)
g3engine(x, y, z, box, rmax, nrval, correction)
g3Cengine(x, y, z, box, rmax, nrval)
greatest.common.divisor(n,m)
getdataname(defaultvalue, ..., dataname)
getdataobjects(nama, envir, datalist)
getfields(X, L, fatal = TRUE)
getglmdata(object, drop=FALSE)
getglmfit(object)
getglmsubset(object)
getlambda.lpp(lambda, X, ...)
getlastshift(X)
getppmdatasubset(object)
getppmOriginalCovariates(object)
getSpatstatVariable(name)
getSumFun(abbreviation, classname, ismarked, fatal)
geyercounts(U,X,r,sat,Xcounts,EqualPairs)
geyerdelta2(X,r,sat)
GLMpredict(fit, data, coefs, changecoef)
good.names(nama, defaults, suffices)
good.correction.K(X)
gridindex(x, y, xrange, yrange, nx, ny)            
grid1index(x, xrange, nx)
grow.rectangle(W, xmargin=0, ymargin=xmargin)
grow.mask(M, xmargin=0, ymargin=xmargin)
gsubdot(replacement, x)
HermiteCoefs(order)
handle.r.b.args(r = NULL, breaks = NULL, window, eps = NULL, rmaxdefault)
handle.rshift.args(W, ..., radius, width, height, edge, clip, edgedefault)
ho.engine(model, ..., nsim, nrmh, start, control, verb)
hsvNA(h, s, v, ...)
IdenticalRows(i,j,a,b)
identical.formulae(x,y)
idorempty(w, r, caller)
ifelseAB(test, a, b)
ifelseAX(test, a, x)
ifelseXB(test, x, b)
ifelseXY(test, x, y)
ifelse1NA(test)
ifelse0NA(test)
ifelseNegPos(test, x)
illegal.iformula(ifmla, itags, dfvarnames)
implemented.for.K(correction, windowtype, explicit)
impliedpresence(tags, formula, df, extranames=character(0))
impliedcoefficients(object, tag)
inpoint(W)
inside.range(x, r)
inside.triangle(x, y, xx, yy)
inside.xypolygon(pts, polly, test01, method)
instantiate.interact(x, par)
intersect.ranges(a,b,fatal)
intX.owin(w)
intX.xypolygon(polly)
intY.owin(w)
intY.xypolygon(polly)
is.atomicQtest(x)
is.cadlag(s)
is.data(Q)
is.expandable(x)
## S3 method for class 'ppm':
is.expandable(x)## S3 method for class 'rmhmodel':
is.expandable(x)is.fv(x)
is.hole.xypolygon(polly)
is.hyperframe(x)
is.infline(x)
is.interact(x)
## S3 method for class 'default':
is.marked(\dots)  
## S3 method for class 'psp':
is.marked(X, \dots)
## S3 method for class 'quad':
is.marked(X, na.action="warn", \dots)
is.mppm(x)
## S3 method for class 'default':
is.multitype(X, \dots)  
## S3 method for class 'quad':
is.multitype(X, na.action="warn", \dots)
is.parseable(x)
## S3 method for class 'mppm':
is.poisson(x)
is.pp3(x)
is.ppx(x)
is.prime(n)
is.psp(x)
is.tess(x)
k3engine(x, y, z, box, rmax, nrval, correction)
Kborder.engine(X, rmax, nr, correction, weights, ratio)
Knone.engine(X, rmax, nr, weights, ratio)
Krect.engine(X, rmax, nr, correction, weights, ratio, fname)
Kount(dIJ, bI, b, breaks)
Kwtsum(dIJ, bI, wIJ, b, w, breaks)
Kpcf.kppm(model, what)
killinteraction(model)
km.rs.opt(o, cc, d, breaks, KM, RS)
kppmMinCon(X, Xname, po, clusters, statistic, statargs, ...)
kppmComLik(X, Xname, po, clusters, control, weightfun, rmax, ...)
## S3 method for class 'ppm':
labels(object, \dots)
least.common.multiple(n,m)
## S3 method for class 'im':
levels(x)
## S3 method for class 'im':
levels(x) <- value
lhs.of.formula(x)
linequad(X, Y, ..., eps, nd)
linearKengine(X, ..., r, reweight, denom, correction, showworking)
linearKmulti(X, I, J, r, ..., correction)
linearKmulti.inhom(X, I, J, lambdaI, lambdaJ, r, ..., correction, normalise)
linearpcfengine(X, ..., r, reweight, denom, correction)
linearpcfmulti(X, I, J, r, ..., correction)
linearpcfmulti.inhom(X, I, J, lambdaI, lambdaJ, r, ...,
                     correction, normalise)
linearKmultiEngine(X, I, J, ...,
                   r, reweight, denom, correction, showworking)
linearPCFmultiEngine(X, I, J, ...,
                   r, reweight, denom, correction, showworking)
listof(...)
localKengine(X, ..., wantL, lambda, correction, verbose, rvalue)
localpcfengine(X, ..., delta, rmax, nr, stoyan, lambda)
localpcfmatrix(X, i, ..., lambda, delta, rmax, nr, stoyan)
local2lpp(L, seg, tp, X)
logi.dummy(X, dummytype, nd, mark.repeat, ...)
logi.engine(Q, trend, interaction, ..., 
            covariates, correction, rbord, covfunargs, allcovar, 
            vnamebase, vnameprefix, justQ, savecomputed, precomputed)
lty2char(i)
parbreak(terse)
passthrough(.Fun, ..., .Fname)
paste.expr(x)
plan.legend.layout(B, ..., side, sep, size, sep.frac, size.frac,
                   started, map)
prettyinside(x, ...)
prettydiscrete(x, n)
## S3 method for class 'localpcfmatrix':
print(x, \dots)
## S3 method for class 'localpcfmatrix':
plot(x, \dots)
putSpatstatVariable(name, value)
## S3 method for class 'localpcfmatrix':
[(x, i, \dots)
## S3 method for class 'pp3':
[(x, i, \dots)
lookup.im(Z, x, y, naok, strict)
majorminorversion(v)
make.even.breaks(bmax, npos, bstep)
makefvlabel(op, accent, fname, sub, argname)
make.parseable(x)
makeunits(sing, plur, mul)
markappend(...)
markcbind(...)
markformat(x)
## S3 method for class 'ppp':
markformat(x)## S3 method for class 'ppx':
markformat(x)## S3 method for class 'psp':
markformat(x)## S3 method for class 'default':
markformat(x)mark.scale.default(marx, w, markscale=NULL, maxsize=NULL)
markspace.integral(X)
## S3 method for class 'default':
marks(x, \dots)
## S3 method for class 'quad':
marks(x, dfok=FALSE, \dots)
markappendop(x, y)
x %mapp% y
marksubset(x, index, format)
marksubsetop(x, i)
x %msub% i
markreplicateop(x, n)
x %mrep% n
mask2df(w)
matcolall(x)
matcolany(x)
matcolsum(x)            
matrixsample(mat, newdim, phase, scale, na.value)
matrowall(x)
matrowany(x)
matrowsum(x)
maxflow(costm)
meanlistfv(z)
meanX.owin(w)            
meanY.owin(w)
model.se.image(fit, W, ..., what)
mpl.engine(Q, trend, interaction, ..., covariates, covfunargs, correction,
	 rbord, use.gam, gcontrol, famille,
         forcefit, nd, eps, allcovar, callstring,
         precomputed, savecomputed, preponly,
         rename.intercept, justQ, weightfactor)
mpl.get.covariates(covariates, locations, type, covfunargs, need.deriv)
mpl.prepare(Q, X, P, trend, interaction, covariates, 
            want.trend, want.inter, correction, rbord, Pname,
            callstring, ...,
            covfunargs, allcovar, precomputed, savecomputed,
            vnamebase, vnameprefix, warn.illegal, warn.unidentifiable,
            weightfactor, skip.border)
MultiPair.checkmatrix(mat, n, matname, naok, zerook, asymmok)
multiplicityNumeric(x)
multiply.only.finite.entries(x, a)
na.handle.im(X, na.replace)
## S3 method for class 'hyperframe':
names(x)
## S3 method for class 'hyperframe':
names(x) <- value
nearest.pixel(x, y, im)
nearest.valid.pixel(x, y, im)
newstyle.coeff.handling(object)
niceround(x, m)
nncleanEngine(kthNND, k, d, ..., tol, maxit,
              plothist, lineargs, verbose, Xname)
nndcumfun(X, ..., r)
no.trend.ppm(x)
nobjects(x)
## S3 method for class 'ppp':
nobjects(x)## S3 method for class 'ppx':
nobjects(x)## S3 method for class 'psp':
nobjects(x)n.quad(Q)
numalign(i, nmax, zero)
numeric.columns(M, logical, others)
nzpaste(..., sep, collapse)
objsurfEngine(objfun, optpar, objargs,
              ..., dotargs, objname,
              ngrid, ratio, verbose)
offsetsinformula(x)
onecolumn(m)
optimStatus(x, call)
printStatus(x, errors.only)
signalStatus(x, errors.only)
ordinal(k)
a %orifnull% b
outdated.interact(object)
overlap.trapezium(xa, ya, xb, yb, verb = FALSE)
overlap.xypolygon(P, Q)
oversize.quad(Q, ..., nU, nX)
owinpolycheck(W, verbose=TRUE)
owinpoly2mask(w, rasta, check=TRUE)
## S3 method for class 'listof':
pairs(\dots, plot=TRUE)
param.quad(Q)
paren(x, type)
partialModelMatrix(X,D,model,callstring,...)
pcf3engine(x, y, z, box, rmax, nrval, correction, delta)
pcfmulti.inhom(X, I, J, lambdaI = NULL, lambdaJ = NULL, ...,
               r = NULL, breaks = NULL,
               kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
               correction = c("translate", "Ripley"),
               sigma = NULL, varcov = NULL,
               Iname = "points satisfying condition I",
               Jname = "points satisfying condition J")
pickoption(what="option", key, keymap, ...,
           exact=FALSE, list.on.err=TRUE, die=TRUE, multi=FALSE)
ploterodewin(W1, W2, col.edge, col.inside, do.plot, ...)
ploterodeimage(W, Z, ..., Wcol, rangeZ, colsZ, do.plot)
## S3 method for class 'addvar':
plot(x, \dots, do.points=FALSE)
## S3 method for class 'barplotdata':
plot(x, \dots)
## S3 method for class 'bw.frac':
plot(x, \dots)
## S3 method for class 'bw.optim':
plot(x, \dots, showopt, optargs)
## S3 method for class 'minconfit':
plot(x, \dots)
## S3 method for class 'parres':
plot(x, \dots)
## S3 method for class 'pppmatching':
plot(x, addmatch = NULL, main = NULL, \dots)
## S3 method for class 'plotpairsim':
plot(x, \dots)
## S3 method for class 'profilepl':
plot(x, \dots, add=FALSE, main=NULL, tag=TRUE, coeff=NULL, xvariable=NULL)
## S3 method for class 'qqppm':
plot(x, \dots, limits=TRUE, monochrome=FALSE,
           limcol=if(monochrome) "black" else "red")
polynom(x, ...)
ppllengine(X, Y, action="project", check=FALSE)
## S3 method for class 'default':
ppm(Q, trend, interaction,
       \dots, covariates, data, covfunargs, 
       correction, rbord, use.gam, method, forcefit,
       project, nd, eps, gcontrol, nsim, nrmh, start, control,
       verb, callstring)
ppmCovariates(model)
ppmDerivatives(fit, what, Dcovfun, loc, covfunargs)
ppmInfluence(fit, what, ..., iScore, iHessian, iArgs,
              drop, method, precomputed)
pppdist.mat(X, Y, cutoff = 1, q = 1, matching = TRUE,
            precision = 9, approximation = 10)
pppdist.prohorov(X, Y, n, dfix, type, cutoff = 1, matching = TRUE,
            ccode = TRUE, precision = 9, approximation = 10) 
ppsubset(X, I)
prange(x)
prefixfv(x, tagprefix, descprefix, lablprefix, whichtags)
primefactors(n, prmax)
primesbelow(nmax)
## S3 method for class 'addvar':
print(x, \dots)
## S3 method for class 'autoexec':
print(x, \dots)
## S3 method for class 'bt.frame':
print(x, \dots)
## S3 method for class 'bw.frac':
print(x, \dots)
## S3 method for class 'bw.optim':
print(x, \dots)
## S3 method for class 'colourmap':
print(x, \dots)
## S3 method for class 'diagppm':
print(x, \dots)
## S3 method for class 'distfun':
print(x, \dots)
## S3 method for class 'envelope':
print(x, \dots)
## S3 method for class 'ewcdf':
print(x, digits, \dots)
## S3 method for class 'fasp':
print(x, \dots)
## S3 method for class 'funxy':
print(x, \dots)
## S3 method for class 'fv':
print(x, \dots, tight)
## S3 method for class 'fvfun':
print(x, \dots)
## S3 method for class 'symbolmap':
print(x, \dots)
## S3 method for class 'Smoothfun':
print(x, \dots)
## S3 method for class 'hyperframe':
print(x, \dots)
## S3 method for class 'influence.ppm':
print(x, \dots)
## S3 method for class 'interact':
print(x, \dots, family=TRUE, brief=FALSE)       
## S3 method for class 'isf':
print(x, \dots)
## S3 method for class 'layered':
print(x, \dots)
## S3 method for class 'leverage.ppm':
print(x, \dots)
## S3 method for class 'linim':
print(x, \dots)
## S3 method for class 'lut':
print(x, \dots)
## S3 method for class 'minconfit':
print(x, \dots)
## S3 method for class 'mppm':
print(x, \dots)
## S3 method for class 'msr':
print(x, \dots)
## S3 method for class 'nnfun':
print(x, \dots)
## S3 method for class 'parres':
print(x, \dots)
## S3 method for class 'plotppm':
print(x, \dots)
## S3 method for class 'plotpairsim':
print(x, \dots)
## S3 method for class 'pppmatching':
print(x, \dots)
## S3 method for class 'profilepl':
print(x, \dots)
## S3 method for class 'quadrattest':
print(x, \dots)
## S3 method for class 'qqppm':
print(x, \dots)
## S3 method for class 'rat':
print(x, \dots)
## S3 method for class 'rmhcontrol':
print(x, \dots)
## S3 method for class 'rmhexpand':
print(x, \dots, prefix=TRUE)
## S3 method for class 'rmhmodel':
print(x, \dots)
## S3 method for class 'rmhstart':
print(x, \dots)
## S3 method for class 'rmhInfoList':
print(x, \dots)
## S3 method for class 'simplepanel':
print(x, \dots)
## S3 method for class 'splitppp':
print(x, \dots)
## S3 method for class 'splitppx':
print(x, \dots)
## S3 method for class 'summary.hyperframe':
print(x, \dots)
## S3 method for class 'summary.listof':
print(x, \dots)
## S3 method for class 'summary.logiquad':
print(x, \dots, dp=3)
## S3 method for class 'summary.lut':
print(x, \dots)
## S3 method for class 'summary.mppm':
print(x, \dots, brief)
## S3 method for class 'summary.owin':
print(x, \dots)
## S3 method for class 'summary.ppp':
print(x, \dots, dp=3)
## S3 method for class 'summary.psp':
print(x, \dots)
## S3 method for class 'summary.rmhexpand':
print(x, \dots)
## S3 method for class 'summary.splitppp':
print(x, \dots)
## S3 method for class 'summary.splitppx':
print(x, \dots)
## S3 method for class 'summary.units':
print(x, \dots)
## S3 method for class 'texturemap':
print(x, \dots)
## S3 method for class 'tess':
print(x, \dots, brief=FALSE)
## S3 method for class 'timed':
print(x, \dots)
prolongseq(x, newrange, step)
putlastshift(X, vec)
quad(data, dummy, w, param)
quad.mppm(x)
RandomFieldsSafe()
ratfv(df, numer, denom, ..., ratio)
recognise.spatstat.type(x)
rectquadrat.breaks(xr, yr, nx = 5, ny = nx, xbreaks = NULL, ybreaks = NULL)
rectquadrat.countEngine(x, y, xbreaks, ybreaks, weights)
reduceformula(fmla, deletevar, verbose)
repair.image.xycoords(x)
resolveEinfo(x, what, fallback, warn)
resolve.vargamma.shape(..., nu.ker, nu.pcf)
rgbNA(red, green, blue, ...)
rhs.of.formula(x, tilde)
rhohatEngine(model, covariate, reference, volume, ...,
               method, smoother, resolution, 
               n, bw, adjust, from, to, 
               bwref, covname, covunits, confidence, modelcall, callstring)
rhohatCalc(ZX, Zvalues, lambda, denom, ...,
           method, smoother,
           n, bw, adjust, from, to, 
           bwref, covname, confidence,
           covunits, modelcall, callstring, savestuff)
RmhExpandRule(nama)
rmhsnoop(..., Wsim, Wclip, R, xcoords, ycoords, mlevels, mcodes, irep, itype, 
     proptype, proplocn, propmark, propindx, numerator, denominator)
quadrat.testEngine(X, nx, ny, alternative, method, conditional,
     ..., nsim, Xcount, xbreaks, ybreaks, tess, fit, Xname, fitname)
quadscheme.replicated(data, dummy, method = "grid", ...)
quadscheme.spatial(data, dummy, method = "grid", ...)
pointgrid(W, ngrid)
rastersample(X, Y)
rasterx.im(x)
rastery.im(x)
rasterxy.im(x, drop)
rebadge.fv(x, new.ylab, new.fname, tags, new.desc, new.labl, new.yexp,
           new.dotnames, new.preferred, new.formula, new.tags)
rebadge.as.crossfun(x, main, sub, i, j)
rebadge.as.dotfun(x, main, sub, i)
rebound(x, rect)
## S3 method for class 'im':
rebound(x, rect)## S3 method for class 'ppp':
rebound(x, rect)## S3 method for class 'psp':
rebound(x, rect)## S3 method for class 'owin':
rebound(x, rect)reconcile.fv(...)
repair.old.factor.image(x)
reincarnate.interact(object)
resid4plot(RES, plot.neg, plot.smooth,
           spacing=0.1, srange=NULL,monochrome=FALSE, main=NULL, ...)
resid1plot(RES, opt, plot.neg, plot.smooth,
              srange, monochrome, main,
              add, show.all, do.plot, ...)
resid1panel(observedX, observedV,
            theoreticalX, theoreticalV, theoreticalSD,
            xlab,ylab, ..., do.plot)
resolve.defaults(..., .MatchNull=TRUE, .StripNull=FALSE)
resolve.1.default(.A, ...)
resolve.2D.kernel(...,
            sigma, varcov, x, mindist, adjust, bwfun, allow.zero)
restrict.mask(M, W)
reverse.xypolygon(p, adjust=FALSE)
revcumsum(x)
rmax.rule(fun, W, lambda)
rotxy(X, angle = pi/2)
rotxypolygon(p, angle = pi/2)
rmhResolveControl(control, model)
rmhResolveExpansion(win, control, imagelist, itype)
rmhResolveTypes(model, start, control)
rmhSnoopEnv(Xinit, Wclip, R)
## S3 method for class 'rmhcontrol':
rmhcontrol(\dots)## S3 method for class 'list':
rmhcontrol(\dots)rmhEngine(InfoList, ..., verbose, kitchensink, preponly, snoop) 
## S3 method for class 'rmhmodel':
rmhmodel(model, \dots)## S3 method for class 'rmhstart':
rmhstart(start, \dots)## S3 method for class 'list':
rmhstart(start, \dots)rmpoint.I.allim(n, f, types)
## S3 method for class 'hyperframe':
row.names(x)
## S3 method for class 'hyperframe':
row.names(x) <- value
rpoint.multi(n, f, fmax, marks, win, giveup, verbose, warn)
runifpoispp(lambda, win = owin(c(0, 1), c(0, 1)))
runifpoisppOnLines(lambda, L)
runifrect(n, win = owin(c(0, 1), c(0, 1)))
safelookup(Z, X, factor, warn)
samefunction(f, g)
scanmeasure(X, ...)
## S3 method for class 'ppp':
scanmeasure(X, r, \dots, method)## S3 method for class 'im':
scanmeasure(X, r, \dots)scanPoisLRTS(nZ, nG, muZ, muG, alternative)
scanBinomLRTS(nZ, nG, muZ, muG, alternative)
second.moment.calc(x, sigma=NULL, edge=TRUE, what="Kmeasure", debug=FALSE,
..., varcov=NULL, expand=FALSE)
second.moment.engine(x, sigma, edge, what, ...,
      obswin, varcov, npts, debug)
sensiblevarname(guess, fallback, maxlen)
sewpcf(d, w, denargs, lambda2area, divisor)
sewsmod(d, ff, wt, Ef, rvals, method="smrep", ..., nwtsteps=500)
## S3 method for class 'influence.ppm':
shift(X, \dots)
## S3 method for class 'leverage.ppm':
shift(X, \dots)
## S3 method for class 'msr':
shift(X, \dots)
## S3 method for class 'quadratcount':
shift(X, \dots)
## S3 method for class 'quadrattest':
shift(X, \dots)
shiftxy(X, vec = c(0, 0))
shiftxypolygon(p, vec = c(0, 0))
short.deparse(x, maxlen)
simplify.xypolygon(p, dmin)
simulrecipe(type, expr, envir, csr, pois)
singlestring(s, coll)
slr.prepare(CallInfo, envir, data, dataAtPoints, splitby, clip)
slrAssemblePixelData(Y, Yname, W, covimages, dataAtPoints, pixelarea)
smoothcrossEngine(Xdata, Xquery, values, sigma, ...,
                    weights, varcov, sorted)
smoothpointsEngine(x, values, sigma, ...,
                    weights, varcov, leaveoneout, sorted)
## S3 method for class 'im':
sort(x, \dots)
spatstat.rawdata.location(...)
spatstatClusterModelInfo(name)
spatstatRmhInfo(cifname)
spatialCDFframe(model, covariate, ...)
spatialCDFtest(model, covariate, test, ...,
         dimyx, eps, jitter, modelname, covname, dataname)
sphere.volume(range, nval = 10)
splat(...)
splitHybridInteraction(coeffs, inte)
sp.foundclass(cname, inlist, formalname, argsgiven)             
sp.foundclasses(cnames, inlist, formalname, argsgiven)
store.versionstring.spatstat()
## S3 method for class 'hyperframe':
str(object, \dots)
strausscounts(U,X,r,EqualPairs)
strsplitretain(x, split)
substringcount(x,y)
suffloc(object)
suffstat.generic(model, X, callstring)
suffstat.poisson(model, X, callstring)
summarise.trend(trend, w, a)
## S3 method for class 'envelope':
summary(object,\dots)
## S3 method for class 'hyperframe':
summary(object, \dots, brief=FALSE)
## S3 method for class 'logiquad':
summary(object, \dots, checkdup=FALSE)
## S3 method for class 'lut':
summary(object, \dots)
## S3 method for class 'mppm':
summary(object, \dots, brief=FALSE)
## S3 method for class 'profilepl':
summary(object, \dots)
## S3 method for class 'pppmatching':
summary(object, \dots)
## S3 method for class 'ppx':
summary(object, \dots)
## S3 method for class 'rmhexpand':
summary(object, \dots)
## S3 method for class 'splitppx':
summary(object, \dots)
sumsymouter(x, w)
superimposeMarks(arglist, nobj)
symbolmaptype(x)
sympoly(x, y, n)
termsinformula(x)
test.crossing.psp(A,B)
test.selfcrossing.psp(A)
tilecentroids(W, nx, ny)
tileindex(x, y, Z)
trap.extra.arguments(..., .Context, .Fatal)
trianglediameters(iedge, jedge, edgelength, ..., nvert, check)
trim.mask(M, R, tolerant)
truncline(x, nc)
tweak.fv.entry(x, current.tag, new.labl=NULL, new.desc=NULL, new.tag=NULL)
## S3 method for class 'default':
unitname(x)## S3 method for class 'default':
unitname(x) <- valueunparen(x)
## S3 method for class 'interact':
update(object, \dots) 
## S3 method for class 'rmhstart':
update(object, \dots)
uptrimat(x)
validradius(r, caller)
validate.mask(w, fatal=TRUE)        
validate.quad(Q, fatal, repair, announce)
validposint(n, caller, fatal)
vanilla.fv(x)
variablesinformula(x)
verbalogic(x, op)
versionstring.interact(object)
versionstring.ppm(object)
versionstring.spatstat()
verifyclass(X, C, N = deparse(substitute(X)), fatal = TRUE)
verify.xypolygon(p, fatal=TRUE)
warn.ignored.args(..., context)
warn.once(key, ...)
waxlyrical(type, terse)
weighted.var(x, w, na.rm)
windows.mppm(x)
## S3 method for class 'msr':
with(data, expr, \dots)
w.quad(Q)               
x.quad(Q)
y.quad(Q)
xy.grid(xr, yr, nx, ny, dx, dy)
X2testEngine(OBS, EXP, ..., method, df, nsim,
     conditional, alternative, testname, dataname)
## S3 method for class 'im':
xtfrm(x)
xypolyselfint(p, eps, proper, yesorno, checkinternal)
xypolygon2psp(p, w, check)