require(RandomFields)
##Define the coordinate of each location
n.site <- 30
locations <- matrix(runif(2*n.site, 0, 10), ncol = 2)
colnames(locations) <- c("lon", "lat")
sigma <- matrix(c(4, 1, 1, 3), 2)
sigma.inv <- solve(sigma)
sqrtCinv <- t(chol(sigma.inv))
model <- list(list(model = "gauss", var = 1, aniso = sqrtCinv / 2))
##Simulate a max-stable process - with unit Frechet margins
ms0 <- MaxStableRF(locations[,1], locations[,2], grid=FALSE,
model = model, maxstable = "Bool", n = 40)
ms0 <- t(ms0)
ms1 <- ms0
##Now define the spatial model for the GEV parameters
param.loc <- -10 - 4 * locations[,1] + locations[,2]^2
param.scale <- 5 + locations[,1] + locations[,2]^2 / 10
param.shape <- rep(.2, n.site)
##Transform the unit Frechet margins to GEV
for (i in 1:n.site)
ms1[,i] <- param.scale[i] * (ms1[,i]^param.shape[i] - 1) /
param.shape[i] + param.loc[i]
##Define a model for the GEV margins to be fitted
##shape ~ 1 stands for the GEV shape parameter is constant
##over the region
loc.form <- loc ~ lon + I(lat^2)
scale.form <- scale ~ lon + I(lat^2)
shape.form <- shape ~ lat + lon
## 1- Fit a max-stable process
fitted <- fitmaxstab(ms1, locations, "gauss", loc.form, scale.form,
shape.form, std.err.type = "none")
condmap(fitted, c(1, 1), seq(0, 10, length = 25), seq(0,10, length =
25))Run the code above in your browser using DataLab